Мягкие припои.
Пайка мягкими припоями получила широкое распространение, особенно при производстве монтажных работ. Наиболее часто применяемые мягкие припои содержат значительное количество олова. В табл. 1 приведены составы некоторых свинцово-оловянных припоев.
Таблица 1
Марка | Химический состав в % | Температура оC | ||||||
олово | свинец | сурьма | примесей не более | |||||
медь | висмут | мышьяк | начало | конец | ||||
ПОС-90 | 90 | 9,62 | 0,15 | 0,08 | 0.1 | 0,05 | 183 | 222 |
ПОС-40 | 40 | 57,75 | 2,0 | 0,1 | 0,1 | 0,05 | 183 | 230 |
ПОС-30 | 30 | 67,7 | 2,0 | 0,15 | 0,1 | 0,05 | 183 | 250 |
ПОС-18 | 18 | 79,2 | 2,5 | 0,15 | 0,1 | 0,05 | 183 | 270 |
При выборе типа припоя необходимо учитывать его особенности и применять в зависимости от назначения спаиваемых деталей. При пайке деталей, не допускающих перегрева, используются припои, имеющие низкую температуру плавления.
Наибольшее применение находит припой марки ПОС-40.Он применяется при пайке соединительных проводов, сопротивлений, конденсаторов.Припой ПОС-30 используют для пайки экранирующих покрытий, латунных пластинок идругих деталей. Наряду с применением стандартных марок находит применение и припой ПОС-60 (60% олова и 40% свинца).
Мягкие припои изготовляются в виде прутков, болванок, проволоки (диаметром до 3 мм) и трубок, наполненных флюсом. Технология указанных припоев без специальных примесей несложна и вполне осуществима в условиях мастерской: свинец расплавляют в графитовом или металлическом тигле и в него небольшими частями добавляют олово, содержание которого определяют в зависимости от марки припоя.
Для пайки различных деталей, не допускающих значительного перегрева, применяются особо легкоплавкие припои, которые получаютдобавлением в свинцово-оловянные припои висмута и кадмия или одного из этих металлов. В табл. 2 приведены составы некоторых легкоплавких припоев.
Таблица 2
При использовании висмутовых и кадмиевых припоев следует учитывать, что они обладают большой хрупкостью и создают менее прочный спай, чем свинцово-оловянные.
Пайка для «чайников». выбор инструмента и советы
Пишу пост прежде всего для новичков — тех, кто только собирается научиться паять, либо попробовал, и получилось «не очень». В том числе для рукодельниц и рукодельников, которые (пока что) не замахиваются на ремонт и разработку электроники. Как следствие — здесь не будет страшного текста про заземление, фен, паяльную пасту и реболлинг. Не будет про высокотемпературные припои. И только самый минимум информации про электричество. Зато хочу рассказать про выбор инструмента, типичные проблемы начинающих и маленькие хитрости. Всё пишу из личного опыта.
Набор из инструментов и материалов для более-менее комфортной пайки включает в себя:
Паяльник, конечно же. В паяльнике важны две составляющие: регулировка температуры и удобное жало. Едва ли не все начинающие берут себе дешман-паяльник без регулировок и с единственным жалом-конусом, а затем мучаются, прилепляя к проводам «сопли» из припоя. Паяльник перегревается, жало не хочет держать припой, припой мгновенно окисляется. Если и вы пошли этим путём, у меня есть хорошая новость: дешёвый паяльник можно доработать до приличного состояния. Но об этом ниже.
Припой. Самый распространённый имеет марку ПОС-61, что означает: припой оловянно-свинцовый с содержанием олова 61%. Свинец — металл токсичный, поэтому стоит принимать разумные меры предосторожности: не есть во время пайки, а после работы мыть руки. И вряд ли стоит паять таким припоем украшения, которые будут носиться на теле. Есть бессвинцовые припои, у них более высокая температура плавления и паять ими немного труднее. Кстати, практически вся электронная промышленность перешла на бессвинцовку из-за требований по экологии.
Ещё припой бывает как с добавлением канифоли, так и без неё, и разной толщины. Самый ходовой — тонкий, с канифолью внутри.
Заказывать припой у китайцев не советую, это лотерея. Хитрые производители научились делать начало и конец катушки из сплава разного качества, и внутренние витки могут состоять едва ли не из чистого свинца. Начинаешь паять — всё хорошо, 5 звёзд продавцу. Но счастье в этом случае длится недолго.
Канифоль. Классика жанра, поэтому пусть будет. Но я ею практически не пользуюсь.
Флюс ЛТИ-120, либо жидкий спиртоканифольный флюс. Флакон лучше с кисточкой. Это вещь! Заменяет твёрдую канифоль, сделан на её основе, однако гораздо удобнее в применении. Основное достоинство: намазывается непосредственно на место пайки и поэтому не выгорает, пока вы несёте паяльник. ЛТИ-120 является более активным флюсом, чем (спирто-)канифоль. Это значит, что с ним паять легче. Но из-за этого ЛТИ очень желательно смывать спиртом после пайки, а канифоль и спиртоканифоль — нет. При пайке точной электроники смывать ЛТИ строго обязательно. И вообще, промывать место пайки — хорошая привычка.
Изопропиловый спирт во флаконе с капельницей/дозатором и ватные палочки. Можно использовать медицинский (этиловый) спирт, если он для вас более доступен. Спирт — очень полезная вещь в хозяйстве. Им можно обезжиривать поверхности, отмывать капли не застывшей эпоксидной смолы или масляной краски, смывать перманентный маркер, отмывать собачьи лапы от еловой смолы, готовить дезинфицирующий раствор против «короны». В общем, универсальная штука. Флакон на фото я не раз уже заправлял из большой банки. В контексте пайки спирт используется и для первичной очистки, и для отмывки места уже сделанной пайки от нагара и остатков флюса.
Зажим «третья рука». Паять без «третьей руки» можно, но очень неудобно. Дешёвую «третью руку» (как на фото) рекомендую сразу доработать. Во-первых, проклеиваем основания «крокодилов», чтобы они не разболтались и не слетели. Я использовал эпоксидный клей. Во-вторых, на губки надеваем кусочки термоусадки и термоусаживаем горелкой/зажигалкой.
Хирургический зажим (карцанг). Желательно — с самыми тонкими губками. На фото толстоват, хотя, смотря что паять. Прямые или изогнутые губки — на ваш выбор. В большинстве случаев заменяет пинцет, плюс его можно зафиксировать в зажатом состоянии. Очень удобная вещь! Вместо или в дополнение к зажиму рекомендую хороший пинцет с тонкими кончиками, которые хорошо смыкаются, не вихляют и имеют плоскую внутреннюю поверхность. Но очень не советую брать дешманские пинцеты из серии «5 штук за 100 рублей». Сделаны из сплава фольги с картоном, не держат ни-че-го! Маникюрные пинцеты тоже плохо подходят: губки не очень ровные и часто «гуляют» друг относительно друга.
1. Пинцет из сплава фольги с картоном.
2. Маникюрный пинцет.
3. Зажим (карцанг).
4. Нормальный пинцет для тонких работ.
Губка для чистки паяльника. Специальная! Губка для посуды не подойдёт! Перед работой её нужно намочить и отжать. Об неё в процессе работы можно вытирать нагар, и держать жало паяльника в чистоте.
Маленькие бокорезы (кусачки). Мне больше нравятся именно такой конструкции, с тонкими острыми губками.
Оплётку для выпаивания. Это плетёнка из тонкой меди, пропитанная канифолью. Набирает на себя припой (лудится). Тем самым, упрощает демонтаж (выпаивание). Использованная, т.е. пропитанная припоем оплётка может помочь залудить какую-нибудь поверхность.
Инструмент для зачистки проводов. Китайский с фото вполне работает. Можно выбрать что-нибудь подороже, но инструмент должен соответствовать толщине зачищаемого провода. Иначе либо не зачистит, либо перекусит.
Макетный нож. Кстати, лезвия для макетников не все одинаково хороши. Большинство — тупые изначально, и предназначены только для офисной бумаги. А какие-то выполнены из калёной стали и легко режут даже плотный ковролин.
Подробнее про паяльник.
Паять, конечно, можно и гвоздём на газовой зажигалке. Но удовольствие это сомнительное. Рассмотрим главные, на мой взгляд, признаки хорошего паяльника.
Контроль температуры. Паяльники без регулировок склонны перегреваться. В этом случае припой на жале моментально покрывается плёнкой окислов, плохо липнет в месту пайки и превращается в «сопли». Поэтому все более-менее хорошие паяльники имеют регулировку, датчик температуры в жале, и умеют поддерживать более-менее постоянную температуру. Есть паяльники с простой «крутилкой» без градуировки, а есть — с цифровым управлением, умеющие отображать текущую температуру в градусах.
Даже если у вас паяльник примитивный и без регулировок, ещё не всё потеряно. Идём в электротовары и покупаем диммер (регулятор яркости) для обычных ламп накаливания, подключаем паяльник через него. Регулируя мощность нагревателя, можно подобрать комфортную температуру жала. Внимание: мощность диммера должна соответствовать мощность паяльника. Паяльник мощностью 20Вт может не запуститься с диммером, требующим мощность нагрузки от 40Вт. А может запуститься, если вывести регулировку сначала на максимум, и затем на нужный уровень.
Если диммера тоже нет, а паять надо, можно на время остужать жало, макнув в твёрдую канифоль. Если жало делает «ПШ-Ш-Ш» и выпускает клубы дыма, а канифоль в месте контакта вскипает — значит, оно было перегрето. Если дым от канифоли идёт струйкой, значит с температурой всё более-менее в порядке.
Жало. Ищите паяльник, к которому продаются запасные жала различной формы. Сейчас почему-то все паяльники продаются с жалом-конусом (иголкой). Почему — я так и не понял, ибо паять конусом мне некомфортно: припой набирается на боковую поверхность, контроль за каплей припоя слабый, при этом тонкий «носик» конуса практически не смачивается припоем и мешается, упираясь в окружающие элементы. На мой взгляд, самой удобной и универсальной является форма «скошенный конус» и «скошенный цилиндр», т.е. жало, имеющее на конце овальную плоскую площадку.
На фото, сверху вниз:
1. Удобное для меня жало формы «Скошенный конус».
2. Жало «Скошенный цилиндр» со слегка скруглённым концом. Не впечатлило.
3. Комплектное жало-иголка. Попытался было переточить, не получилось.
4. Жало-конус от самого дешманского паяла.
Советские паяльники оснащались медным жалом, сейчас же в моде не обгорающие («вечные») жала. Достоинства меди: хорошо передаёт нагрев, хорошо прилипает припой, легко придавать форму напильником. Но медное жало «разъедается» припоем, и его периодически приходится править напильником. В итоге оно со временем укорачивается. Не обгорающее жало может служить годами, если соблюдать несколько правил. Во-первых, постараться не использовать его с активными флюсами или для плавки (резки) пластика. Во-вторых, не «жарить» постоянно на максимальной температуре. В-третьих, очевидно, не стачивать его напильником/наждаком, т.к. не обгорающий слой может быть ограничен по толщине. В самом дешёвом паяльнике может быть вставлено не обгарающее жало-конус и затянуто винтом. Хороший вариант — найти медную проволоку подходящей толщины, и из неё нарезать медных жал. Их можно сделать с запасом и заточить под любую удобную для вас форму. Будьте внимательны, под видом медного провода сейчас можно встретить омеднённый алюминий. На фото — несколько удобных самодельных жал из медного провода. К слову: сплав меди и олова — это бронза.
Хозяйке на заметку: в медном жале в процессе его эксплуатации образуется ямка. Если при правке жала на напильнике её не заравнивать до ровной плоскости, и оставить небольшое углубление, то может получиться даже удобнее, чем ровная плоскость. Углубление хорошо держит каплю припоя и по-умному называется «микроволна».
Итак. Дешёвый паяльник можно сделать весьма комфортным в работе, если докупить к нему диммер, выкинуть «не обгорающее» родное жало-конус и наделать из толстого медного провода жал удобной вам формы.
Теперь о процессе.
Минутка химии и физики. Как известно, большинство металлов на воздухе окисляются. То есть металл соединяется с кислородом воздуха и образуется оксид. Оксиды имеют более высокую температуру плавления, чем не окисленный металл, и гораздо хуже переносят тепло. Причём, чем выше температура, процесс окисления идёт быстрее. В частности, расплавленный припой, оставленный на паяльнике, довольно быстро покрывается плёнкой окислов. Плёнка эта находится в твёрдом (не расплавленном) состоянии, и сильно препятствует нормальной пайке. Если каплю припоя пошевелить или потыкать, то видно, что она оказывается как бы в мешочке. Одна из основных функций флюсов (той же канифоли) — это препятствовать образованию окислов. Канифоль окисляется активнее, чем металл, и в разогретом виде может отбирать кислород у оксидов. Оксид вновь превращается в жидкий металл, а канифоль — в пахучий дым и в чёрный нагар на жале. Когда канифоль с жала вся израсходуется, плёнка оксидов возникает вновь. На перегретом паяльнике канифоль расходуется практически моментально, а «мешочек» образуется буквально за секунду, из-за этого паять таким паяльником сложно. Получается даже парадокс: перегретый паяльник хуже прогревает объект пайки из-за плёнки окислов. Плёнку окислов можно снимать не только флюсом, но и механически, вытирая разогретое жало об губку или другой подходящий материал.
Кроме того, окислы на паяемом металле тоже препятствуют прилипанию припоя. Если медь тёмная, её перед пайкой крайне желательно зачистить до блеска. Другой способ справиться с окислами на объекте пайки — это применение активных флюсов, в частности, паяльной кислоты. Паять с кислотой легче, но она, во-первых, испускает едкий дым. Во-вторых, разъедает жало, что особенно важно при использовании дорогой «необгорайки». И, в-третьих, требует обязательной промывки места пайки, т.к. со временем сделанная пайка может развалиться. К слову, алюминий тоже можно паять, но на воздухе он моментально покрывается тонкой плёнкой окислов. Для противодействия окислению применяются специальные флюсы.
Флюсы. Это вещества или составы, облегчающие пайку или плавку металла. Паяльные флюсы бывают различными по консистенции: твёрдыми (например, канифоль), жидкими (примеры: спиртоканифоль, ЛТИ-120) или гелеобразными. Жидкий или гелеобразный флюс наносится непосредственно на место пайки, а значит, он не обгорит, пока вы несёте паяльник от баночки с флюсом к месту пайки. Твёрдый флюс в баночке (ту же канифоль) можно использовать для лужения (покрытия слоем припоя) проводов и самого жала паяльника.
Кроме того, флюсы отличаются по химической активности, электропроводности и, как следствие, необходимости отмывки после работы. И я встречал случаи неправильной маркировки производителем: флюс, который заявляется, как безотмывочный, на самом деле весьма неплохо проводит электричество.
Функции флюса при пайке:
1. Смазка. Помогает формироваться аккуратным шарикам припоя и не «прикипать» к поверхностям, которые не паяются.
2. Очистка паяемой поверхности от окислов и грязи, защита от окисления в процессе.
3. Защита припоя от окисления, убирание плёнки окислов с припоя.
Профессионалы советуют не набирать припой на жало, а прикасаться проволочкой припоя к месту пайки одновременно с паяльником. Плюс такого метода: и быстрее, если паять нужно много всего сразу, и канифоль в проволочке припоя попадёт на место пайки в свежем виде. Можно даже не пользоваться дополнительными флюсами. Но. Этот приём требует свободных обеих рук, однако часто одной рукой держим, второй паяем.
Передача тепла — это то, что нужно и понимать, и прочувствовать на своём опыте. Чтобы припой стал жидким, его нужно разогреть. Чтобы припой был жидким в месте пайки, нужно разогреть место пайки до температуры плавления припоя. Это очевидно. Но если мы паяем массивный, по сравнению с жалом, объект, то разогреть его может быть непросто. Во-первых, металлы очень хорошо передают тепло. Во-вторых, тепло накапливают (имеют теплоёмкость). И, наконец, отдают тепло вовне. В итоге, даже используя мощный паяльник, можно столкнуться с непрогревом места пайки. Например, печатные платы мощной электроники проектируются так, чтобы хорошо отводить и рассеивать тепло. Как можно победить непрогрев:
1. Набрать на жало капельку припоя и нанести флюс на место пайки. «Сухое» жало передаёт тепло плохо.
2. Греть дольше; ждать, пока прогреется. Но рядом с местом пайки могут располагаться детали, которые нельзя перегревать.
3. Банально — увеличить температуру паяльника. В некоторых случаях помогает, но риск перегрева и повреждений окружающих элементов выше, и, кроме того, окислы на паяльнике могут мешать передаче тепла.
4. Поставить жало потолще и покороче, подходящее по размеру. Способность проводить тепло — одна из важнейших характеристик жала.
5. Подогреть объект пайки дополнительно. В бытовых условиях, в частности, можно прогреть градусов до 100 на перевёрнутом утюге, и на нём же выполнять пайку.
6. Пойти на хитрость: использовать легкоплавкий припой. И об этом поподробнее.
Содержащий свинец припой плавится легче бессвинцового. Промышленная пайка по экологическим причинам практически вся сейчас выполняется бессвинцовым припоем, разогреть который паяльником бывает сложновато. Но можно набрать на паяльник каплю обычного ПОС-61 и «поелозить» им в точке пайки, после чего уже весь припой становится жидким, поскольку разбавляется легкоплавким. Можно пойти дальше и использовать ещё более легкоплавкий состав. В частности, сплав Розе плавится при менее, чем 100 градусах Цельсия. Удобно! Но за удобство приходится платить легкоплавкостью результатов труда. Если изделие в процессе использования будет нагреваться, то такая пайка может развалиться сама по себе. Внимание: оставшийся на жале паяльника или в местах пайки сплав может привести к сюрпризам в будущем, сделав последующие пайки также легкоплавкими. Крайне нежелательно его использовать для ремонта заметно греющейся электроники: видеокарт, смартфонов, светодиодного освещения и т.д. И за злоупотребление розе можно огрести «пару ласковых» от профессионалов.
Кроме того, важна передача тепла от нагревателя к жалу. У меня был опыт, когда керамический нагреватель слегка болтался внутри жала. Паять было сложновато. Несколько слоёв медной фольги решили проблему.
Бывает, что припой после застывания оказывается матовым, а не красивым-блестящим. Почему так происходит? Во-первых, неправильный температурный режим и плёнка окислов. Во-вторых, состав самого припоя. Сюрприз, но это может зависеть от состава припоя, не все припои застывают в красивые глянцевые капли.
FAQ по основным явно заметным проблемам пайки (пайка не получается)
1. Жало не держит припой. При попытке набрать припой на жало, он скатывается каплями на стол. Прогреть место пайки почти не получается. Причина: жало не залужено. Нужно очистить жало, с помощью припоя и канифоли заново залудить. Если проблема часто повторяется, значит, жало перегрето.
2. Припой не держится на объекте пайки. Причина: плёнка окислов (либо лак) на объекте пайки. Да, встречается медь, покрытая бесцветным лаком. Например, провод наушников. Нужна либо механическая очистка, либо использование активного флюса.
3. Припой в месте пайки моментально застывает неаккуратными «соплями», плавится медленно и с явным трудом, паяльник слегка липнет. Причина: теплопередача от паяльника недостаточна.
4. При пайки образуются «сопли», шипы из припоя. Место пайки выглядит неаккуратно. Причина: нехватка флюса, плёнка окислов на припое.
Не очевидные «косяки» новичков (пайка получается некачественная или портится со временем):
1. Непропай. Паяное соединение держится на флюсе в роли клея. С электрическим контактом и надёжностью беда.
2. Злоупотребление активным флюсом. Он может разъедать пайку со временем, при работе разъедает «вечные» жала.
3. Неотмытый флюс. Если это канифоль — ничего страшного, кроме внешнего вида. Иные флюсы люто проводят электричество или разъедают (см. выше) пайку.
4. Сплав Розе. Да, с ним удобно, но пайка становится легкоплавкой.
5. Перегрев чувствительных к нагреву элементов. Печатная плата может расслоиться, пластиковый разъём может деформироваться, а электроника — выйти из строя.
6. Избыток припоя, который куда-то бодро уходит в процессе пайки. Может привести к сюрпризам в собираемой электрической схеме.
Подготовка поверхности изделий к пайке — инструмент, проверенный временем
ПОДГОТОВКА к ПАЙКЕ ПОВЕРХНОСТИ МЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ
Термическая очистка. Удаление с паяемой поверхности различного рода неметаллических загрязнений можно проводить ацетилено-кислородной или керосино-кислородной горелками, дающими широкий факел пламени. Для удаления окалины и изоляции этот способ очистки сочетается с последующей обработкой металлическими щетками.
Очистка поверхности деталей от оксидных и неметаллических включений может проводиться в восстановительной среде или в вакууме.
Механическая очистка. Этот метод очистки создает шероховатую поверхность, что улучшает условия капиллярного течения припоя. В качестве инструмента могут’ быть использованы металлические щетки, напильники, шаберы, шлифовальная шкурка. Очистка металлическими щетками весьма производительна, рекомендуется для алюминиевых и магниевых сплавов.
Для механизированного удаления изоляции можно использовать автоматические установки.
Очистку поверхности мелких деталей и удаление заусенцев проводят в галтовочных барабанах.
Весьма эффективными и экономичными методами очистки является гидропескоструйная и дробеструйная обработка. Для очистки рекомендуется использовать кварцевый песок или абразивный порошок. Процесс осуществляется в специальной гидропескоструйной камере. Желательно, чтобы частицы имели острые грани для создания шероховатости поверхности.
Химическая очистка проводится путем обезжиривания и травления с последующей промывкой в воде.
Обезжиривание проводится с целью очистки от остатков жировых загрязнений. Рекомендации по химическому обезжириванию поверхности материалов перед пайкой приведены в табл. 1,2 И ].
Не рекомендуется обезжиривать в растворах щелочей детали из материалов, химически реагирующих с щелочами (цинк, алюминий, свинец и др.), или детали, имеющие на поверхности места, обдужениые оловянно-свинцовыми припоями [1].
Консервирующие смазки с изделий со сложной конфигурацией поверхности, с внутренними полостями и глубокими отверстиями удаляют с помощью органических растворителей. Бензин хорошо растворяет жиры и масла. Парами ацетона пользуются для очистки деталей из алитированных металлов.
В крупносерийном и массовом производстве детали очищают от жира дихлорэтаном, трихлорэтаном, трихлорэтиленом и др. Эти растворители хорошо поддаются регенерации.
Трихлорэтилен склонен к разложению под действием света, особенно при перегреве. Для повышения химической устойчивости трихлорэтилена в ванну вводят стабилизатор (уротропин, диэти — ламин).
Методом погружения обрабатывают детали тонкого сечения и сильно загрязненные маслом и полировальными пастами. В парах растворителя обрабатывают крупногабаритные и малозагрязнен — ные изделия.
Более совершенным является комбинированный способ обезжиривания в парах и погружением в ванну. Иногда для обезжиривания применяют эмульсии на основе органических растворителей (табл. 3).
Для обезжиривания изделий сложного профиля применяется электрохимическое обезжиривание. Оно рекомендуется для изделий из стали, меди и ее сплавов, алюминия и его сплавов. Составы
электролитов для электрохимического обезжиривания приведены в табл. 4.
Ультразвуковое обезжиривание целесообразно для очистки мелких деталей от жира, ржавчины, оксидных пленок, абразивных, и полировальных паст.
Составы моющих средств при ультразвуковом обезжиривании приведены в табл. 5.
Качество обезжиривания поверхности деталей контролируют с помощью радиоактивных изотопов, фотометрическим способом, а также способом, основанным на изменении интенсивности флуоресценции при облучении ультрафиолетовыми лучами обезжиренных поверхностей.
Химическое травление. Составы ванн для химического травления приведены в табл. 6—8.
Электрохимическое травление. Для ускорения операции очистки деталі, помещают в качестве анода — (анодное травление) или катода (катодное травление) в электролитическую ванну. Составы растворов и режимы электрохимического травления приведены в табл. 9—11.
Травление с применением ультразвука. Ультразвуковая очистка ■ деталей во много раз производительнее химического травления.
В качестве травителя используются растворы кислот.
После обработки детали необходимо промыть.
Комбинированное обезжиривание и травление. Этот вид обработки применяют с целью предварительной очистки деталей от продуктов коррозии, оксидов и жировых загрязнений. Составы ванн для комбинированной обработки стали и чугуна приведены в табл. 12.
Обеспечение сохранности поверхности. Поверхность деталей, подготовленная к пайке, может’ быть сохранена от окисления нанесением на нее флюсов-лаков (для изданий печатного монтажа) или полимерной пленки, которая при нагреве перед пайкой разлагается без остатка (полимеры оксидов, толуол, сополимер формальдегида с диоксаланом).
Контроль качества подготовки поверхности. Для оценки качества подготовки поверхности к пайке может быть использована методика, основанная на изучении растекания припоя при смачивании паяемой поверхности жидкостью. Время растекания и краевой угол смачивания припоя позволяют количественно оценить качество подготовки поверхности.
В производстве микроэлектронных устройств постоянно повышаются требования к чистоте поверхности и стабильности ее состояния. Разработан прибор, позволяющий быстро проводить бесконтактные неразрушающие измерения контактной разности потенциалов (КРП). Измерение КРП выполняется ионизационным
Компонєнтбї | Содержание, % | Компоненты | Содержание. % |
Дистиллированная жирная | 12 | Мыльный раствор триэтанол- | 25 |
коксовая кислота | аминолета | ||
Масляная кислота | 22 | Трихлорэтилен | 75 |
Триэтаноламин | 17 | ||
Диэтил енгл икс ль монобути — леи | 15 | Керосин | 3 |
Углеводород (температура | 20 | Эмульгатор ОП-7 | 1 |
кипения 180 °С) | |||
Вода | 14 | Вода | 96 |
3. Составы эмульсий для комбинированного обезжиривания |
4. Составы электролитов, г/л, для электрохимического обезжиривания
Очищаемые материалы
Составы ванн для химического травления сталей н цветных материалов
Продолжение табл. 6
Медь и ее сплавы
Серная кислота I 12,5
Натрий двухромовокислый | 1—3 *8
Золото и его сплавы
Серная кислота | 12,5 *1
Алюминий и его сплавы
Едкий натр I 20—35
Углекислый натрий | 20—30
Магний и его сплаті
4 Объемные доли, %. *2 Содержание в мл. Массовые доли, %.
9. Составы электролитов для электрохимического травления при 20 °С
|
Анодное травление
50 Для деталей, имеющих небольшую
160 окалину
10
Катодное травление
Серная кислота | 50 | Анод кремнистый, чугун или сплав |
Соляная кислота | 30 | свинца с сурьмой |
Хлористый натрий | 20 |
методом с применением источника альфа-излучения. Этот способ дает возможность проводить количественную оценку загрязненности поверхностей.
Твердые припои.
Твердые припои создают высокую прочность шва. В электро- и радиомонтажных работах они используются значительно реже, чем мягкие припои. В табл. 3 приведены составы некоторых медно-цинковых припоев.
Таблица 3
Марка | Химический состав в % | Температура плавления в оС | |||||
медь | цинк | примесей не более | |||||
сурьма | свинец | олово | железо | ||||
ПМЦ-42 | 40—45 | остальное | 0,1 | 0,5 | 1,6 | 0,5 | 830 |
Г1МЦ-47 | 45—49 | 0,1 | 0,5 | 1,5 | 0,5 | 850 | |
ПМЦ-53 | 49-53 | 0,1 | 0,5 | 1,5 | 0,5 | 870 |
В зависимости от содержания цинка изменяется цвет припоя. Эти припои применяются для пайки бронзы, латуни, стали и других металлов, имеющих высокую температуру плавления. Припой ПМЦ-42 применяется при пайке латуни с содержанием 60—68% меди. Припой ПМЦ-52 применяется при пайке меди и бронзы.
Медно-цинковые припои изготовляются путем сплавления меди и цинка в электропечах, в графитовом тигле. По мере расплавления меди в тигель добавляют цинк, после расплавления цинка добавляется около 0,05% фосфорной меди.Расплавленный припой разливается в формочки.
Таблица 4
Марка | Химический состав в % | Температура плавления в оС | ||||
серебро | медь | цинк | примеси не более | |||
свинец | всего | |||||
ПСР-10 | 9,7—10,3 | 52-54 | Ос т а л ь н о е | 0,5 | 1,0 | 830 |
ПСР-12 | 11,7-12,3 | 35-37 | 0,5 | 1,0 | 785 | |
ПСР-25 | 24,7-25,3 | 39-41 | 0,5 | 1,0 | 765 | |
ПСР-45 | 44,5-45,5 | 20,5 —30,5 | 0,3 | 0,5 | 720 | |
ПСР-65 | 64,5-65,5 | 19,5 -—20,5 | 0,3 | 0,5 | 740 | |
ПСР-70 | 69,5-70,5 | 25,5— 26,5 | 0,3 | 0,5 | 780 |
Серебряные припои обладают большой прочностью, спаянные ими швы хорошо изгибаются и легко обрабатываются. Припои ПСР-10 и ПСР-12 применяются для пайки латуни, содержащей не менее 58% меди, припои ПСР-25 и ПСР-45 — для пайки меди, бронзы и латуни, припой ПСР-70 с наиболее высоким содержанием серебра — для пайки волноводов, объемных контуров и т. п.
Кроме стандартных серебряных припоев, используются и другие, составы которых приведены в табл. 5.
Таблица 5
Первый из них применяется для пайки меди, стали, никеля, второй, обладающий высокой проводимостью,— для пайки проводов; третий может применяться для пайки меди, но не пригоден для черных металлов; четвертый припой обладает особой легкоплавкостью, является универсальным для пайки меди, ее сплавов, никеля, стали.
В ряде случаев в качестве припоя используется технически чистая медь с температурой плавления 1083°С.
Химически пассивные флюсы (бескислотные).
К бескислотным флюсам относятся различные органические вещества: канифоль, жиры, масла и глицерин. Наиболее широко в электро- и радиомонтажных работах применяется канифоль (в сухом виде или раствор ее в спирте). Самое ценное свойство канифоли, как флюса, заключается в том, что ее остатки после пайки не вызывают коррозии металлов.
Канифоль не обладает ни восстанавливающими, ни растворяющими свойствами. Она служит исключительно для предохранения места пайки от окисления. Для приготовления спиртово-канифольного флюса берется одна весовая часть толченой канифоли, которая растворяется в шести весовых частях спирта.
Стеарин не вызывает коррозии. Используется для пайки с особо мягкими припоями свинцовых оболочек кабелей, муфт и др. Температура плавления около 50°С.
В последнее время широкое применение получила группа флюсов ЛТИ, применяемых для пайки металлов мягкими припоями. По своим антикоррозийным свойствам флюсы ЛТИ не уступают бескислотным, но в то же время с ними можно паять металлы, которые раньше не поддавались пайке, например детали с гальваническими покрытиями.
Таблица 7
При пайке с флюсом ЛТИ достаточно произвести очистку мест пайки только от масел, ржавчины и других загрязнений. При пайке оцинкованных деталей удалять цинк с места пайки не следует. Перед пайкой деталей с окалиной последняя должна быть удалена травлением в кислотах.
Предварительное травление латуни не требуется. Флюс наносится на место спая с помощью кисточки, что можно сделать заблаговременно. Хранить флюс следует в стеклянной или керамической посуде. При пайке деталей сложного профиля можно применять паяльную пасту с добавлением флюса ЛТИ-120. Она состоит из 70—80 г вазелина, 20—25 г канифоли и 50—70 млг флюса ЛТИ-120.
Но флюсы ЛТИ-1 и ЛТИ-115 имеют один большой недостаток: после пайки остаются темные пятна, а также при работе с ними необходима интенсивная вентиляция. Флюс ЛТИ-120 не оставляет темных пятен после пайки и не требует интенсивной вентиляции, поэтому применение его значительно шире.
Обычно остатки флюса после пайки можно не удалять. Но если изделие будет эксплуатироваться в тяжелых коррозийных условиях, то после пайки остатки флюса удаляются при помощи концов, смоченных спиртом или ацетоном. Изготовление флюсатехнологически несложно: в чистую деревянную или стеклянную посуду заливается спирт, насыпается измельченная канифоль до получения однородного раствора, затем вводится триэтаноламин, а затем активные добавки.
П О П У Л Я Р Н О Е:
- Самодельный паяльник
- Всё о заборах…
- О МЕРАХ БЕЗОПАСНОСТИ ПРИ ИЗГОТОВЛЕНИИ И НАЛАДКЕ УСТРОЙСТВ!
«вечный паяльник»
Самодельный паяльник всего за один час можно сделать своими руками без особых затрат. Для изготовления паяльника нам понадобится сопротивление пэвка (ПЭВ-10) от ламповых телевизоров и другой ламповой аппаратуры — это уже и есть почти готовый паяльник. Останется лишь соединить хомутиком сопротивление с ручкой и вставить жало, которое как раз подходит от 40-вт паяльника. Подробнее…
Забор своими руками. деревянный, металлический, бетонный…
Наступает летняя пора. Кому-то отдых, а кому-то ремонт и строительство. Давайте сейчас рассмотрим, какие бывают типы заборов и напоследок, об их украшении.
Сегодня, при современных технологиях делать заборы и ограждения можно разными материалами. Обычно сначала делаются столбики и небольшой парапет, а потом пространство между ними закрывается отдельными секциями, сделанными из приглянувшегося материала.
Подробнее…
Популярность: 3 134 просм.