Изучение электронной техники полупроводниковых приборов является важным и необходимым условием для успешного ремонта. Успешно освоив уроки электроники, вы научитесь понимать процессы происходящие в полупроводниках. На основании транзисторов построены подавляющее большинство электронных устройств
При распайке микросхем частенько возникают трудности. Эти элементы нужно паять довольно аккуратно, чтобы не возникало проблем с работой микросхемы. Для этого необходимо ухищряться и искать более удобные способы, которые помогут распаять деталь и не повредить ее составляющие. Не стоит отгибать ножки микросхемы по одной – это не приведет ни к чему хорошему. Поэтому рассмотрим несколько универсальных и простых способов распайки микросхем.
- Реболлинг, что это?
- Просто паяльником
- Два простых высоковольтных генератора своими руками
- Диодный мост
- ▍ Блокинг-генератор
- ▍ Как работает лазерный принтер
- ▍ Поющая Тесла
- Подбор материалов для пайки
- Подбираем трафаретную пластину
- Выбор пасты или шариков
- Полупроводниковые приборы
- Припаивание микросхемы
- Финальный штрих
- Реболлинг — это несложно
- Использование медицинских иголок
- ▍ Сборка
- Светодиоды
- Техника безопасности
- Безопасность компонентов
- P-N переход
- Оптоэлектронные приборы
- С помощью бритвенного лезвия
- ▍ Испытания
- Транзистор
- Технологии реболлинга
- Реболлинг пастой
- Накатываем шарики при помощи трафарета
- «Горячая» накатка
- «Холодная» накатка шаров BGA
- Накатываем шары на микросхему без использования трафаретов
- Использование демонтажной оплетки
- Демонтажные работы
- Убираем компаунд
- Извлекаем микросхему
- Подготовка деталей к пайке
- Проверяем состояния элементов
- Необходимость ремонта плат с BGA
- С помощью оловоотсоса
- ▍ Выводы
Реболлинг, что это?
Действительно частой причиной повреждения контактов становится простое механическое воздействие. Например, устройство в процессе эксплуатации уронили или оно получило удар при транспортировке или эксплуатации. Часто для ремонта таких повреждений достаточно восстановления шариковых выводов и повторной установки компонента.
Сам процесс восстановления шариковых выводов называется «реболлинг» (от англ. „reballing“).
Операция реболлинга является достаточно востребованной, но далеко не самой простой. Главная ее особенность заключается в том, что качественный реболлинг не сделать, как говорится, «голыми руками». Для этого требуется специальное оборудование, при этом сам мастер должен иметь соответствующие навыки и опыт.
Грубо говоря, все выполняемые ремонтные работы можно разделить на два вида: демонтаж микрочипа и его запайку. Но в начале надо позаботиться о безопасности выполняемых работ.
Материал обновлён 10.02.2023
Время чтения: 24 минуты
BGA-микросхемы используются во всех современных устройствах, будь то компьютер, ноутбук, смартфон или игровая приставка.
Свое название они получили в честь применяемой технологии изготовления контактов – BGA (от англ. Ball Grid Array – массив шариков). В ней, для присоединения BGA компонентов к печатной плате используется припой в виде шариков.
Как паяют такие микрочипы? Что такое реболлинг? Какое оборудование, а также какие приемы используют? Обо всем об этом мы поговорим в этой статье.
Просто паяльником
Данный способ распайки таких элементов считается самым трудным. К нему можно прибегнуть только тогда, когда других инструментов нет под рукой, и их нельзя срочно достать или одолжить. Чтобы не навредить микросхеме, необходимо тщательно подготовить аппарат перед использованием.
Очищаем инструмент от налета при помощи специальной губки или обыкновенной влажной тряпки. Далее берем кисточку и намазываем специализированный состав на пайки. Лучше всего подойдет спиртоканифоль. Затем стержень паяльника окунаем в тот же самый состав и начинаем процесс распайки. Делать это нужно очень осторожно, поскольку перегревание микросхемы грозит ее выходом из строя.
Два простых высоковольтных генератора своими руками
Привет, Хабр! Опыты с высоким напряжением, наверное, никогда не выйдут из моды. Есть в них какая-то особенная романтика, увлекающая не только старшеклассников. Сегодня рассмотрим пару простых схем: электрозажигалку на блокинг-генераторе и музыкальный трансформатор Теслы на основе качера Бровина. Давайте соберём и испытаем оба устройства.
Прежде чем приступать к рассмотрению этих двух любительских конструкций, необходимо вспомнить технику безопасности. Высокие напряжения опасны для жизни людей, животных, и особенно сложной цифровой техники, такой, как компьютеры и телефоны. И вообще любой техники, содержащей полевые транзисторы. Также высоковольтный разряд способен вызвать пожар, а радиаторы высоковольтных игрушек очень сильно нагреваются.
Само слово импульс, применительно к электрическому, предполагает наличие у этого импульса крутых фронтов. А значит, высоких частот в энергетическом спектре. А на высокочастотные токи сильно влияют паразитные индуктивности и ёмкости, даже совсем небольшие.
Потому импульсные схемы «не любят», когда их макетируют как попало. Они «предпочитают» печатную плату, избавляющую устройство от хаоса искажений и наводок.
К счастью, в местном киоске электротоваров продавались несколько наборов для сборки. Все они явно от китайских друзей с Алиэкспресс, но товаровед подошёл творчески и снабдил их забавными этикетками с фото любимых видеоблоггеров, распечатанных на чёрно-белом принтере.
Диодный мост
Диодный мост состоит из 4-х диодов. В диагональ моста подается переменное напряжение. Он предназначен для выпрямления переменного напряжения в постоянное. На выходе моста после выпрямления появлются полупериоды выпрямленного напряжения. Они имеют форму обрезанных синусоид.
На вход подается переменное напряжение положительной полуволны. В этот момент открывается диод VD1, ток через нагрузку протекает в определенном направлении и выходит через диод VD4 в линию сети. При поступлении отрицательной полуволны открывается VD2 и ток через нагрузку протекает в том же направлении как и в первом случае. Уходит в линию через VD3.
Из этого следует, что ток в нагрузке всегда течет в одном направлении. А напряжение на выходе имеет форму, изображенную на графике ниже (Uвых(t)).
▍ Блокинг-генератор
Схемотехнически устройство представляет собой обычный блокинг-генератор с насыщающимся сердечником. Работает он следующим образом.
Биполярный транзистор структуры NPN включён по схеме с общим эмиттером. Его коллекторной нагрузкой является толстая, она же силовая обмотка. При подаче питания на базу через тонкую, управляющую обмотку, резистор и диод приходит напряжение прямого смещения эмиттерного перехода, вследствие чего появляется ток базы, и транзистор начинает открываться.
Постепенно увеличивается ток через силовую обмотку. Соответственно, растёт магнитный поток, и в управляющей обмотке появляется электродвижущая сила (ЭДС) взаимоиндукции, действующая в том же направлении, что и питающее напряжение. Она помогает транзистору открываться дальше.
Когда магнитопровод или транзистор входит в насыщение, рост тока в толстой обмотке прекращается, и далее ток начинает уменьшаться. ЭДС в управляющей обмотке меняет знак, противодействуя напряжению питания. Транзистор закрывается. Далее всё повторяется снова.
Отметим, что диод UF4007 со сверхбыстрым временем восстановления запертого состояния. Обычный выпрямительный 1N4007 в такой высокочастотной схеме работать не будет.
▍ Как работает лазерный принтер
Кстати, лазерные принтеры и копировальные аппараты, они же «ксероксы», тоже работают благодаря высокому напряжению. Именно оно притягивает тонер на незасвеченные участки селенового фотобарабана. А с засвеченных, лазером либо светом, отражённым от бумажного оригинала, электрический заряд, сообщённый поверхности фоточувствительного вала роликом предварительного заряда или коротроном, уходит на алюминиевый корпус фотобарабана.
Далее тонер, представляющий собой смесь пигмента, смолы и оксида железа (ржавчины), прилипает к заряженной от коротрона бумаге, и благодаря смоле, запекается на ней в печке. А оксид железа в тонере нужен затем, чтобы он притягивался к магнитному валу для равномерной дозированной подачи на фотобарабан.
Таинственный коротрон — это натянутая металлическая проволока, лезвие или пластина с зубцами, служащие для возникновения коронного разряда. И, соответственно, переноса нужного электрического заряда соответственно замыслу разработчиков прибора.
Так как при коронном разряде создаются электромагнитные помехи и выделяется озон, могущий оказывать разрушительное воздействие на различные материалы, организмы человека и животных, (как, впрочем, и на болезнетворные микроорганизмы и вирусы), в современной технике стараются применять меньше коротронов и больше роликов переноса заряда. К тому же ролики сильнее подвержены износу, чем коротроны, что выгодно производителям запчастей к принтерам и копирам.
Итак, первый набор самый простой. Он состоит из печатной платы, готового трансформатора с ферритовым сердечником и секционированной вторичной высоковольтной обмоткой, одного транзистора с радиатором и винтиком, клавишного выключателя, одного резистора 120 Ом и одного диода UF4007. Также прилагаются нейлоновая стяжка для крепления трансформатора и «гребёнка» PLS-6, для которой отсутствует посадочное место. Зачем она нужна, мы увидим далее.
На плате медь и паяльная маска с одной стороны. Металлизация отверстий отсутствует, она для такой простой платы и не нужна. На другой стороне шелкография сообщает, что куда паять. Это особенно радует в свете отсутствия инструкции. Хотя она нашлась на Алиэкспресс, вместе со схемой и указанием напряжения питания — 3.7 вольта.
То есть, преобразователь предназначен для питания от одной литиевой ячейки. Если хотим питать от более высокого напряжения, но не выше 12 вольт, необходимо увеличить номинал единственного резистора, в диапазоне от 150 Ом до 1 килоома.
▍ Поющая Тесла
Второй высоковольтный преобразователь чуть посложнее, и представляет собой резонансный трансформатор без магнитопровода, он же трансформатор Теслы.
На биполярном транзисторе BD243 собран так называемый качер, или качатель реактивностей Владимира Ильича. Нет, не Ленина, а Бровина.
Имена и творческое наследие Николы Теслы и Владимира Бровина, как и романтика самодеятельных высоковольтных экспериментов, окутаны ореолом мистики. Им посвящены сотни дискуссий на сотни страниц, привлекающие адептов теорий заговора, искателей бестопливной генерации энергии, рептилоидов, красной ртути, древнего атмосферного электричества и прочих интересных тем, где наука, история, опыт перемежаются с научной фантастикой и волшебными сказками.
Попутно успешно рекламируются и продаются активаторы воды и иных субстанций, гармонизаторы пространства и приборы физиотерапевтического назначения, устройства для фотографирования биополя и прочие интересные вещи. В ход идут натуральный камень, красивые катушки индуктивности, газоразрядные лампы и трубки. В чём-то из всего этого есть рациональное зерно и реальная польза, в чём-то сомнительно, но всё это очень занятно.
О том, почему качатель реактивностей всё же работает, хотя необходимые для генерации вынужденных колебаний обратные связи на схеме не нарисованы, существует множество мнений. Лично мне по душе простое материалистическое объяснение на уровне школьного курса физики.
На самом деле, качер Бровина работает благодаря шумам транзистора. Собственным тепловым, квантовым, обусловленным воздействием ионизирующего излучения, — сгодятся любые. Благодаря этим шумам, транзистор начинает что-то генерировать. Это что-то (а именно, усиленный транзистором шум) возбуждает колебания в контуре, образованном индуктивностью и межвитковой ёмкостью катушки, а также паразитными ёмкостями.
А так как колебательный контур имеет резонансную частоту, то и колебания устанавливаются на этой частоте. Учитывая, что все качеры довольно мощные или очень мощные, устанавливается и паразитная обратная связь, как раз на этой частоте. Что очень похоже на классическую авторскую конструкцию Теслы с искровым возбуждением.
В помощь шумам транзистора китайские разработчики данного промышленного образца установили ещё и светодиод LED1. Не все знают, но светодиод в прямом включении также генерирует некоторый ощутимый уровень шумов.
А на полевом транзисторе с изолированным затвором, он же MOSFET, собран модулятор, позволяющей изменять мощность высоковольтного генератора в такт амплитуде звукового сигнала. Так как температура плазмы в искре очень высока, модуляция мощности приводит к колебаниям нагрева воздуха. Который, следовательно, расширяется и сужается, тем самым генерируя звуковые волны. Так работает музыкальный трансформатор Теслы.
Сборка набора затруднений не вызвала, всё заработало с первого раза. Длинный конец вторичной обмотки должен быть сверху. Это разрядник, и со временем он обгорает. Подстройка резонанса осуществляется изменением геометрии первичной обмотки, представляющей собой кусок изолированного провода.
Наилучшие результаты у меня получились от источника питания паяльной станции, выдающего 24 вольта 5 ампер постоянного тока. При более низком питающем напряжении, музыки от электрического разряда не было слышно.
Возможно, я перепутала красный и синий светодиоды, имеющие разные падения напряжения в прямом включении, и, соответственно, влияющие на работу схемы. Какой из светодиодов должен быть красным, а какой синим, на схеме не написано. Тем не менее устройство работает и поёт, потому переделывать его не хочется.
Процесс сборки и испытания электронной игрушки для взрослых запечатлён на видео.
А музыкальная шкатулка, с которой брался звуковой сигнал, собиралась так.
Подбор материалов для пайки
После успешного прохождения проверки можно приступать к реболлингу. Операция состоит из двух основных этапов: «накатки» (наплавления) припоя и собственно припайки микрочипа на PCB. Каждый из этих этапов может быть выполнен с применением различного оборудования, а также по различной технологии.
Для реболла могут использоваться либо специальная паяльная паста, либо оловянно-свинцовый или бессвинцовый припой в виде шариков.
При наплавке часто пользуются трафаретными пластинами, однако даже при их отсутствии также возможно выполнить наплавку.
Трафаретодержатель (слева), набор из 18 универсальных трафаретов (справа)
Чтобы выполнить реболлинг чипа, потребуются дополнительные принадлежности:
Набор из 11 банок BGA паста для пайки Daikin Handa DK-309Bi и флюс MECHANIC MCN-UV10
Подбираем трафаретную пластину
Существует два типа трафаретных пластин для «холодной» и «горячей» накатки. Те, что предназначены для «горячей» накатки, не деформируются от температуры, по этому их используют как с пастой для пайки, так и с BGA шариками. Пластины для «холодной» накатки используют только для раскладки шариков по местам. При нагреве они сильно деформируются, что ведет к появлению серьёзных дефектов: непропай, слипание контактов, а также смещению припоя.
Различить их достаточно просто. Трафаретные пластины, применяемые для «горячей накатки» изготавливают в размер чипа или немного больше его. Это позволяет значительно уменьшить термическую деформацию. Все пластины, используемые для «холодной накатки» изготавливаются стандартного типоразмера на 80 мм
или 90 мм. Дополнительно они оснащаются отверстиями для фиксации в трафаретодержателе.
Всегда очищайте трафаретные пластины после использования. Это облегчит отделение его от чипа при будущих применениях.
Трафареты для «горячей» (слева) и «холодной» (справа) наплавки.
Также трафаретные пластины могут быть специальными или универсальными. Специальные изготавливаются под конкретный чип или его серию. На них выполняется надпись, указывающая для какого микрочипа он предназначен. Например, надпись «PS4 CXD90028G 0.5ММ» говорит нам, что трафарет предназначен для наплавления шариков размером 0,5 мм на чипы серии CXD90028G игровой консоли PlayStation 4.
На универсальных указывают два параметра: диаметр используемых шариков, а также шаг, с которым выполнены отверстия. Однако иногда вместо шага может указываться число отверстий по вертикали и горизонтали. Пример маркировки с указанием шага: «P=1.0 0.6MM». Пример маркировки с указанием числа отверстий: «0.76MM 34*34».
Если вы собираетесь серьёзно заниматься реболлингом, то нужно сразу приобрести крупный набор на 545 предметов. Это позволит вам быстро найти необходимую трафаретную пластину для конкретной микросхемы.
Трафаретные пластины: универсальная (слева) и специальная (справа)
Не пренебрегайте рекомендациями производителя по выбору размера шаров. Используя слишком большой диаметр, вы рискуете получить слипание контактов. При использовании слишком маленьких – получите высокое переходное сопротивление контактов. Это может привести к нестабильному функционированию микрочипа.
Выбор пасты или шариков
Что использовать, паяльную пасту или шары? Здесь всё индивидуально. Каждый мастер выбирает самостоятельно, то с чем ему работать. С чем ему удобнее или к чему уже привык. Давайте обсудим нюансы использования каждого материала.
Особенности применения пасты для пайки:
- занимает мало места;
- есть срок годности;
- требуется соблюдение условий хранения;
- возможна только «горячая» BGA накатка;
- при избытке флюса припой может «выпрыгнуть» из ячейки;
- при неплотном прилегании трафаретной пластины или при её температурной деформации возможно слипание контактов.
- Особенности применения шаров для процесса напайки:
- надо иметь запас разных диаметров;
- можно использовать технологию как «холодной», так и «горячей» напайки;
- четко дозированный объем припоя;
- можно напаивать контакты при отсутствии трафарета.
Емкости с шариками-припоем
Полупроводниковые приборы
Для построения электронных схем совместно с пассивными элементами используются полупроводниковые приборы, изготавливаемые из материалов занимающих промежуточные положения между металлами и диэлектриками. Металл проводит электрический ток, а диэлектрик нет. Это связано с их химическими свойствами – расположением валентной зоны и зоны проводимости. Проводимостью элементов является способность вещества пропускать через себя электрический ток. Обозначается буквой G, измеряется в См (сименс), данная величина обратно пропорциональна величине электрического сопротивления.
Полупроводников в природе значительно больше, чем металлов и диэлектриков. К ним относятся Si (кремний), Ge (германий), GaS (арсенид галлия) и др. Полупроводники меняют свои свойства под действием внешних факторов – нагрев, охлаждение, введение различных примесей. Эти свойства используются для изготовления полупроводниковых приборов.
Припаивание микросхемы
Финальный этап – это припаивание микрочипа на место. Этап является не менее ответственным, а поэтому к нему надо подходить в полном вооружении, – обладая всем необходимым оборудованием и материалами.
Список требуемого оборудования, а также принадлежностей:
Идеальным решением будет использование инфракрасной ПС. Это позволит полностью автоматизировать процесс запаивания, а также обеспечит высокое качество соединения. Однако часть мастеров предпочитают термовоздушные фены или пока не могут позволить себе ИК станцию. В таком случае следует обеспечить соответствующее качество выполняемых работ, а также четкий контроль нагрева.
На этом этапе, для предотвращения возникновения температурных деформаций PCB, нужно использовать предварительные нагреватели. О том, как выбрать предподогреватель можно узнать в статьях: «Как выбрать преднагреватель плат: гайд от Суперайс», а также «Почему так важен предварительный нагрев печатных плат».
Последний этап ремонта выполняется в следующей последовательности:
- осуществляется финальная проверка микрочипа, а также печатной платы на чистоту и отсутствие повреждений;
- контактные площадки на PCB покрывают флюсом, а затем размещают на преднагревателе;
- укладывают микрочип на место и выравнивают его по меткам;
В процессе припайки обязательно выполняют контроль нагрева чипа при помощи термопары подключенной к мультиметру, токоизмерительным клещам, при помощи инфракрасного пирометра или тепловизора.
Для финальной припайки нужно обязательно применять безотмывочный флюс. Он в процессе нагрева полностью испарится, а не останется между микрочипом и платой. Это предотвратит вероятность развития коррозии контактов, а также возникновения токов утечки.
Финальный штрих
По окончании под микроскопом припаивания выполняется общая оценка выполненной работы. При отсутствии дефектов, а также повреждений на PCB возвращают выпаянные элементы. Затем выполняют её отмывку и сборку устройства
Далее проводятся проверка и комплексное испытание отремонтированного оборудования.
Реболлинг — это несложно
Процесс реболла только кажется сложным и трудоемким. Однако при должной практике вы быстро «набьёте руку» и повысите свои навыки. Четко соблюдая технологию, а также контролируя температурный режим вы добьётесь высокого качества ремонтных работ.
Однако не стоит забывать и об оснащении своего рабочего места. Имея необходимое оборудование, вы сможете выполнять весь комплекс ремонтных работы на высоком уровне. Чтобы выбрать необходимые приборы и инструменты мы советуем заглянуть в соответствующие статьи: «Выбираем оборудование для ремонтной мастерской. Часть 1.», а также «Выбираем оборудование для ремонтной мастерской. Часть 2.».
Если же у вас остались какие-либо вопросы, то их можно направить нашим консультантам. Они всегда готовы помочь.
Использование медицинских иголок
Приобретается такой инструмент в обыкновенной аптеке. Толщина иголки не должна быть очень большой, чтобы пролезала в монтажное отверстие, но и не слишком маленькой, иначе ее нельзя будет поместить на вывод микросхемы. Кончик иглы необходимо спилить, чтобы получилась некая трубочка.
Сама иголка помещается на вывод микросхемы, а место спая разогревается паяльником. Далее иголка проходит в монтажное отверстие, где ее нужно начинать сильно вращать, до того момента, как припой застынет. После этого можно считать, что ножка микросхемы была изолирована от припоя, а значит и сам элемент может быть освобожден.
Распайка микросхемы – очень трудный и кропотливый процесс. Необходимо правильно подобрать инструменты, чтобы работать было намного проще. Паяльник нужно использовать в самую последнюю очередь, когда больше ничего нет под рукой. Главное следить, чтобы микросхема не перегревалась, иначе система полностью выйдет из строя.
Уроки электроники направлены на изучение полупроводникового прибора с одним P-N переходом и двумя выводами, который называется диодом. Описанные выше свойства P-N перехода относятся к диоду. ВАХ диода имеет не линейную зависимость тока от напряжения. Наиболее широкое распространение получили германиевые и кремниевые полупроводниковые приборы.
Диоды классифицируются по:
- назначению
- конструкции
- току
- напряжению
- частоте
- другим параметрам
Существуют различные виды диодов: импульсные, туннельные, выпрямительные и множество других. Выпрямительные используются для выпрямления переменного тока в постоянный. Импульсные применяются для работы в импульсных цепях, обладают низкой емкостью P-N перехода. Туннельные нашли применение в генераторах высокой частоты.
Помимо диодов существуют их разновидности: фотодиоды, светодиоды, стабилитроны.
Стабилитрон – диод Зенера, где напряжение в области электрического пробоя не зависит от тока. Применяются данные приборы для стабилизации напряжения. Светодиоды и фотодиоды имеют эффект оптического излучения в зоне видимого или инфракрасного спектра, применяются для индикации или в системах дистанционного управления.
▍ Сборка
Теперь, когда мы поняли, что перед нами за генератор, и на каком принципе основана его работа, поговорим о нюансах сборки данной конструкции.
Насчёт радиатора. Лично мой и моих любящих электронику друзей опыт однозначно говорит, что если китайцы положили в набор радиатор, значит, транзистор или микросхема будут нагреваться сильно или очень сильно.
Потому категорически рекомендую перед установкой транзистора на радиатор намазать его теплоотводящую поверхность тонким слоем термопасты.
Это не сильно затруднит сборку, зато добавит шансов избежать разочарований и хлопот, возникающих при тепловом пробое полупроводниковых приборов. (Сгоревший транзистор ещё и немного коптит, и очень неприятно воняет).
Установить транзистор неправильно не получится, потому что он устанавливается после крепления к радиатору. Надеюсь, вы не прикрутили его задом наперёд, то есть, медной подложкой к головке винта, а не к радиатору, как должно быть.
Сверхбыстрый диод устанавливается на плате согласно катодной полоске, отмеченной на шелкографии.
Выводы обмоток паяются так: справа правый толстый, слева левый тонкий, посередине — два остальных.
И наконец, от PLS гребёнки отламываем половину, вытягиваем тонкогубцами или пинцетом среднюю ножку, а крайние изгибаем так, чтобы расстояние между их кончиками было меньше, чем между точками пайки проводов от вторичной высоковольтной обмотки.
Это приспособление из PLS вилки будет нашим высоковольтным разрядником, и является расходным материалом, так как при работе нагревается и обгорает.
Добавлю, что лично в моём экземпляре конструктора длина кабельной стяжки оказалась недостаточной (либо я что-то не так делаю), и вместо неё пришлось взять другую из запасов.
Светодиоды
Светодиоды – диоды содержащие P-N переход. Где при прохождении электрического тока, генерируется оптическое излучение, сопровождающее рекомбинацией носителей. Цвет свечения зависит от примеси полупроводника.
Фоторезисторы – изменяют сопротивление под действием излучения.
Фотодиод – обладает свойством односторонней проводимости, возникшей при воздействии на него оптического излучения. Он используется для преобразования оптического сигнала в электрический.
Фототранзистор – обычно биполярный, управление током коллектора осуществляется на основе фотоэффекта и служит для преобразования световых сигналов в электрические.
Оптрон – прибор состоящий из излучателя света и фотоприемника, взаимодействующих друг с другом, помещенных в одном корпусе.С помощью оптрона осуществляется гальваническая развязка, разделения цепей. Широкое применение нашли в автоматике, блоках питания, в частотных преобразователях и многих других электронных устройствах.
Техника безопасности
Все работы нужно проводить в хорошо вентилируемом помещении, так как при пайке образуются испарения, которые могут причинить вред вашему здоровью.
На некоторых этапах используются химикаты (например, при отмывке платы и компонентов). От них также выделяются испарения. Поэтому необходимо использовать средства личной защиты: очки, респиратор, перчатки.
Безопасность компонентов
Особую опасность для компонентов представляет статический заряд. Он способен вывести из строя электронные компоненты. Для защиты от статики необходимо использовать антиэлектростатические инструменты и принадлежности. А подробнее о статическом электричестве вы можете узнать в нашей статье: «Что такое электростатический разряд».
Следует помнить, что компонентам может нанести вред высокий уровень влажности, резкий перепад температур, а также любые непредвиденные механические воздействия. Поэтому в помещениях для их хранения и в самой мастерской должны быть приемлемые климатические условия. Рабочее же место мастера должно быть удобным, а также оборудовано всем необходимым оборудованием и принадлежностями.
P-N переход
Наиболее распространенным элементом полупроводника является кремний. На уроках электроники изучим кристаллическое строение материалов, подробно разберем что такое P-N переход. Также он называется “электронно-дырочным” переходом. Для работы в полупроводник вводятся примеси.
Существует два вида P-N переходов:
- акцепторные
- донорные
Примесные атомы замещают основные атомы кристаллической решетки.
Граничный слой между двумя областями материалов с разными примесями образуют электрический переход, благодаря диффузии. Этот переход называется P-N переходом. Таким образом, P-N переход – это переход между двумя областями полупроводника, имеющих разный тип проводимости.
При приложении напряжения к P-N переходу “+” к P-области, а “-” к N-области электрический ток будет протекать. В обратном приложении напряжения ток протекать не будет. Это связано с технологией изготовления и свойствами полупроводника. На основании работы P-N перехода был изобретен полупроводниковый элемент – Диод. Для полного открытия диода кремниевой структуры необходимо приложить напряжение в прямом смещении 0,65 – 0,7 вольта.
Оптоэлектронные приборы
Уроки электроники посвящены изучению различных элементов полупроводников. Можно заметить, что многие из них могут зависеть от внешних явлений окружающей среды, например – света. Этот раздел изучает оптоэлектроника, т.е. взаимодействие электромагнитных волн с электронами, а также метод создания оптоэлектронных приборов.
Основными элементами оптоэлектроники являются:
- лазеры
- ИК-диоды
- УФ-диоды
- фотодиоды
- фототранзисторы
- оптоволоконные системы
С помощью бритвенного лезвия
Чтобы пайки не остывали, их нужно прогревать одновременно. Для этого понадобится лишняя пластина. С этой задачей замечательно справится обыкновенное бритвенное лезвие. Так все пайки начнут совместно прогреваться, после того, как лезвие окажется под целым рядом этих элементов.
Главное, чтобы при нагреве мощности паяльника хватило на целый ряд. Как только схема начнет прогреваться, ее обязательно нужно немного покачивать. Далее с помощью ножа аккуратно извлекаем лезвие и саму микросхему.
▍ Испытания
Зато заработал преобразователь сразу, и прекрасно поджигает не только бумагу и целлюлозную салфетку, но и туристическое сухое горючее (гексаметилентетрамин, прессованный с парафином). Если поместить плату в корпус, получим хорошую зажигалку, не нуждающуюся в газе или бензине.
Как всё это происходило, можно посмотреть на видео.
А здесь резервное видео, на случай неполадок с Ютубом.
Транзистор
Транзистор – полупроводниковый прибор имеющий два и более P-N перехода. Имеет три вывода, предназначен для работы усиления сигналов (аналоговые схемы), ключевых режимах (цифровые схемы), генерирования и преобразования сигналов. Существуют биполярные и полевые транзисторы.
Обозначение выводов биполярных транзисторов:
- База (B)
- Коллектор
- Эмиттер (E)
Обозначение выводов полевых транзисторов:
- Затвор (G)
- Сток (D)
- Исток (S)
Биполярные транзисторы имеют разные структуры проводимости P-N-P и N-P-N.
Данный вид полупроводниковых приборов имеют различные схемы включения в электронных цепях:
- с общей базой (ОБ)
- с общим эмиттером (ОЭ)
- с общим коллектором (ОК)
Названия включения происходит от того электрода биполярного транзистора, который является общим для входной и выходной цепи. Часто встречающаяся схема включения является схема с общим эмиттером.
Полевой транзистор – полупроводниковый прибор. Его работа обусловлена током основных носителей заряда – зарядов одного знака электронов или “дырок”. Данный вид транзисторов имеет следующие преимущества перед биполярными:
- входное высокое сопротивление
- невысокая мощность управления
- низкое сопротивление канала в открытом состоянии (Rds)
- работа при низких температурах
- могут отлично работать на высоких частотах
Данный вид транзисторов делится на транзисторы с управляющим P-N переходом и с изолирующим затвором.
Транзисторы с изолирующим затвором существуют двух видов:
- со встроенным каналом (канал создается в процессе изготовления)
- индуцированным каналом который создается под действием напряжения приложенного к электродам транзистора.
Данный вид транзисторов нашел широкое применение в электронной технике (блоки питания майнеров, сварочные аппараты, LED-подсветка, различные виды памяти и т.д.).
Транзистор с индуцированным каналом
Транзистор с индуцированным каналом имеет следующее строение:
- подложка – пластина слабо легированное кремния. В подложке создаются сильно легированные области с полупроводником.
- сток (D)
- истоком(S)
- затвор (G)
Транзистор со встроенным каналом
Под действием приложения напряжение на границе раздела диэлектрика и полупроводника индуцируется обогащенный слой электронами. Таким образом образуется канал. Необходимое напряжение для подачи на затвор составляет от 3,5 до 20 вольт. Следовательно в исходном состоянии (отсутствие приложенного напряжения) канал между стоком и истоком транзистора отсутствует.
За счет структуры изготовления данные виды транзисторов часто называют МДП или МОП транзисторы. Что означает – металл, диэлектрик, полупроводник или металл, оксид, полупроводник.
Транзисторы полевые как и биполярные могут включаться:
- с общим истоком (ОИ)
- с общим стоком (ОС) – истоковый повторитель
- с общим затвором(ОЗ)
МДП структуры широко применяются в микросхемах памяти так как достигнуты размеры миниатюризации, где данный вид приборов находит все большее и большее применение в области нанотехнологических разработок и миниатюризации устройств, а также их быстродействия.
В силовой электронике не всегда удобно использовать разные виды транзисторов (биполярный, полевой). Биполярный транзистор держит высокие токи, имеет сложное управление включения (открывается при помощи тока). Полевой транзистор имеет более простое управление (открывается напряжением) но держит не очень высокие токи.
На базе двух типов транзисторов изобретен вид транзисторов IGBT. Данный вид транзистора позаимствовал управление от полевого G (Gate – Затвор), а выход взят от биполярного транзистора Коллектор Эммитер. У данного полупроводникового прибора управление происходит напряжением. Это упрощает схемы. IGBT транзистор держит большой выходной ток. Транзистор имеет три вывода: затвор, коллектор, эммитер.
Для проверки полевых транзисторов при помощи мультиметра необходимо проверить Затвор-Исток и Затвор-Сток. Расположение щупов мультиметра на выводах транзистора не имеет значения, при данной проверке. Сопротивление в диодной прозвонке равно 1 или OL. При приложении щупов к выводам Сток-Исток в одном из случаев должны увидеть падение напряжения на диоде, примерно 0,45 вольта. Это говорит о исправности полевого транзистора.
Тиристоры – электронные приборы имеющие четырехслойную структуру. Они состоят из областей P-N переходов соединенных друг за другом. Приборы имеющие два вывода называются динисторами. Прибор имеющий три вывода называется тиристор (симистор, работающий в отличие от тиристора в две стороны).
Тиристоры (симисторы) имеют следующие выводы:
- анод
- катод
- управляющий электрод
В настоящее время тиристоры используются преимущественно в силовой электронике, как мощные управляемые коммутаторы силовых электрических цепей.
Тиристоры имеют допустимые значения токов и напряжений, время включения и выключения.
Технологии реболлинга
Технология наплавления контактных соединений едина для всех компонентов. Она не зависит от того выполняете вы реболлинг процессора, чипа памяти или же это реболлинг видеочипа. Для эффективного выполнения наплавки требуется только практика. Совершенствовать свои навыки можно на неисправных компонентах. Но для начала разберемся с основами технологии реболлинга.
Реболлинг пастой
Пасту для пайки можно использовать при отсутствии шаров подходящего диаметра. При использовании этой технологии нужно контролировать прилегание трафаретной пластины, а также наполненность его ячеек. Не должно быть избытка флюса, а также остатки паяльной пасты не должны находиться на его поверхности.
Ошибки в технологии могут привести к образованию перемычек между контактами, непропаю контактов или выпрыгиванию расплава из ячеек трафарета.
Последовательность операций следующая:
- нанесите флюс, а затем распределите его по контактным площадкам;
- разместите поверх чипа трафаретную пластину, выровняйте её, а затем зафиксируйте всю конструкцию в держателе;
- убедитесь в плотном прилегании пластины, а также отсутствии её изгибания;
- нанесите пастушпателем или лопаткой распределите ее по поверхности заполняя все свободные отверстия, излишки удалите;
- равномерно прогрейте конструкцию термофеном или ИК нагревателем до полного оплавления пасты;
- по окончании оплавления, дайте конструкции немного остыть, а затем аккуратно удалите трафарет;
- под микроскопом убедитесь в качестве наплавления; при необходимости еще раз прогрейте полученные соединения термофеном или допаяйте пропущенные участки;
- после полного остывания смойте с микрочипа остатки флюса.
Накатываем шарики при помощи трафарета
Преимущество шариков – это их строго выверенный диаметр. При их использовании формируются контакты единого размера. Также у них нет срока годности, а это значит, что им не требуется определенных условий хранения, как пастам для пайки. При всем при этом использование шаров значительно ускоряет процесс реболлинга.
В зависимости от используемого трафарета возможны два варианта накатки. Разберем оба.
«Горячая» накатка
При горячей накатке шарики BGA наплавляются без снятия трафаретной пластины.
- нанесите флюс и ровным тонким слоем размажьте его по поверхности микрочипа;
- разместите трафарет, а затем зафиксируйте всю конструкцию в держателе;
- разместите держатель в емкости для сбора излишков шаров;
- насыпьте немного шаров и распределите их по отверстиям кистью;
- выньте трафаретодержатель из емкости и разместите перед собой;
- равномерно прогрейте поверхность термофеном до полного оплавления припоя;
- дав конструкции немного остыть, аккуратно уберите трафарет;
- удостоверьтесь в качестве накатки, а при необходимости дополнительно прогрейте контактные соединения термофеном;
- после полного остывания чипа смойте остатки флюса.
Если трафаретодержатель не имеет площадки для сбора шариков, то разместите его в любой неглубокой емкости. Это позволит вам собрать просыпавшиеся шары и оставив рабочее место в чистоте.
«Холодная» накатка шаров BGA
Для выполнения «холодного» наката используют специальные трафаретожердатели со съемной верхней частью, а также трафаретные пластины с единым размером на 80 мм
или 90 мм.
- нанесите на микрочип флюс тонким слоем распределив его по поверхности;
- разместите чип в трафаретодержателе отцентрировав его;
- разместите трафарет в специальном держателе;
- соедините две части трафаретодержателя;
- выровняйте отверстия с контактными «пятаками» чипа, а затем зафиксируйте всю конструкцию винтами;
- насыпьте шары и распределите их по отверстиям;
- высыпьте излишки шариков, а затем аккуратно удалите трафарет;
- убедитесь, что все шары находятся на своих местах, а при необходимости скорректируйте их положение и доложите недостающие;
- извлеките микрочип из держателя и разместите на термостойкой поверхности;
- выставим минимальную скорость воздушного потока на термофене и равномерно прогрейте шары до их оплавления;
- удостоверьтесь в качестве напайки, в также отсутствии дефектов;
- после полного остывания промойте микросхему.
«Запекания» шаров можно выполнить на инфракрасных паяльных станциях. В таких установках отсутствует риск их сдувания потоком воздуха.
Накатываем шары на микросхему без использования трафаретов
Такой способ реболлинга достаточно трудоемкий. Его выполняют только шариками. Связано это с тем, что вручную нанести одинаковый объем пасты, даже используя шприц-дозатор, невозможно.
Оптимальный способ «накатки», в отсутствие трафарета, – это ручная раскладка шаров по контактным площадкам. Поверхность микрочипа предварительно покрывают флюсом, а затем используя пинцет, медицинский зонд или зубочистку для размещения по контактным площадкам.
По окончанию раскладки выполняется процедура запаивания. Она аналогична той, что применяется при «холодной» технологии.
Для снятия трафарета можно воспользоваться скальпелем либо тонким пинцетом. Помните, что для этого есть всего несколько секунд (не более 15 секунд с момента прекращения нагрева), пока флюс не застыл. Если же опоздать, то придется вновь прогревать микросхему, чтобы добиться размягчения флюса.
Использование демонтажной оплетки
Чтобы сделать распайку еще более эффективной, можно использовать оплетку от кабеля, которую нужно тщательно покрыть флюсом. Прижимая данный элемент к пайкам, которые потом будут нагреваться паяльником, можно увидеть, насколько быстро микросхема освобождается. Такое действие оказывает пористость оплетки и ее гигроскопичность. В продаже есть готовые оплетки, но можно использовать и обыкновенный телевизионный провод.
Демонтажные работы
Прежде всего, необходимо извлечь печатную плату с микрочипом, которая находится в устройстве. Корпус надо вскрывать аккуратно, чтобы ни в коем случае не повредить его. Так как в ремонте нуждаются самые разные устройства: телефон, ноутбук, планшет, телевизор, то для их разборки требуется специальный инструмент. Неудобно и ненадежно каждый раз выискивать что-то подходящее из подручных средств для этого. Поэтому хорошим выбором станет универсальный набор инструментов, который поможет аккуратно вскрыть корпус любого современного устройства.
Универсальный набор инструментов ремонтника
Убираем компаунд
Часто, особенно в мобильных устройствах, можно встретить чипы залитые специальным веществом. Это вещество – специальный компаунд. Он позволяет надежно герметизировать элементы. Под них не попадает случайно пролитая вода, а также не сконденсируется влага. Дополнительно компаунд обеспечивает надёжную фиксацию микрочипа, защищая его контактные соединения от разрыва при вибрации, а также ударах. Однако за всеми этими преимуществами стоит сложность снятия зафиксированных компаундом электронных компонентов.
Удалите компаунд по периметру чипа, а также с прилежащих к нему областей. После этого можно приступать к процедуре нагрева микрочипа и его снятию.
Извлекаем микросхему
Ремонт начинается с демонтажа электронного компонента с печатной платы. Для удобства ремонтируемую PCB нужно зафиксировать. Для этого можно воспользоваться специальным держателем. Такое приспособление будет удобно даже при обычных ремонтных работах с электроникой. Определится с держателем вы можете, прочитав нашу специальную статью: «Обзор держателей для печатных плат «третья рука»».
Платодержатели: BEST BST-001C (слева) и BANGSTOOL LFJH400 (справа)
Для снятия микросхемы необходимо прогреть припой соединяющий её с PCB до температуры плавления. Для решения этой задачи можно воспользоваться термовоздушной паяльной станцией (ТВ ПС), либо инфракрасной паяльной станции (ИК ПС).
Термовоздушные станции удобны для выполнения большинства операций по BGA и SMD пайке. Эти устройства компактны, просты в эксплуатации и обслуживании. Подробнее о выборе термовоздушных ПС можно прочитать в статье: «Как выбрать термовоздушную паяльную станцию?».
Термовоздушная ПС Quick 857DW+ (слева) и YIHUA-852D+ (справа)
Инфракрасные ПС имеют больший функционал и предназначены для выполнения серьёзных ремонтных работ. Таких, как: пайка процессоров, видеочипов, реболл графического процессора, микрочипов памяти, а также других.
Их ключевые особенности:
- наличие верхнего и нижнего нагревателей;
- точный контроль температуры нагрева за счет применения термоконтроллера или ПЛК (программируемого логического контроллера);
- дополнительное оборудование в виде вакуумного пинцета, системы позиционирования.
Более подробно о преимуществах, а также критериях выбора ИК ПС можно прочесть в наших статьях: «Как выбрать ИК станцию» , «Обзор паяльных станций или как выбрать паяльную станцию», «ТОП ИК станций».
Инфракрасные ПС для BGA корпусов: ACHI IR 6500 (слева) и Dinghua DH-A2E (справа)
Если микросхема вышла из строя, то при демонтаже можно не сильно беспокоиться о ее перегреве. В такой ситуации важно не повредить саму плату, соседние электронные компоненты, а также пластиковые элементы. Для обеспечения этого надо:
- при работе с термовоздушными нагревателями использовать насадки концентрирующие воздушный поток;
- при использовании ИК станций – оснащать их концентратором, насадкой или диафрагмой фокусирующей, или ограничивающей поток инфракрасного излучения;
- для защиты термочувствительных деталей и электронных компонентов от высокой температуры наклеивать на них алюминиевую клейкую ленту, медный самоклеящийся скотч или полиимидный термоскотч.
Ленты медная, лента алюминиевая, полиимидный скотч
Если предполагается, что компонент не поврежден, то контроль температуры при ее демонтаже очень важен. При использовании термовоздушных фенов выставляют температуру воздушного потока в 300-350 градусов, а на ИК ПС выбирается соответствующий профиль нагрева. В процессе нагрева обязательно выполняют контроль температуры термопарой, пирометром или тепловизором.
Для снятия еще горячего микрочипа, чтобы не обжечься, а также не повредить его при снятии, нужно воспользоваться вакуумным пинцетом.
Подготовка деталей к пайке
Перед монтажом микросхемы необходимо подготовить «пятаки» (контактные площадки) находящиеся на PCB. Надо убрать остатки припоя и компаунда. Для начала выставив 150 градусов, прогревают PCB термофеном или на столе преднагревателе. После размягчения компаунда его остатки соскребают деревянным шпателем или зубочисткой. По окончании операции посадочное место очищают изопропиловым спиртом и мягкой щеткой.
После очистки от компаунда приступают к удалению остатков припоя с контактных выводов. Эту операцию называют деболлинг. Для очистки используют паяльник с контролем температуры, например, это может быть паяльная станция YIHUA-852D+.
Передняя панель ПС YIHUA-852D+ отражающая текущую температуру нагрева
Как только площадка будет очищена можно приступать к удалению остатки флюса и других загрязнений.
Для облегчения снятия остатков припоя можно пролудить контакты низкотемпературным сплавом Розе.
При запайке старого или донорского чипа его контактные площадки также требуют очистки. Удаление припоя, а также остатков компаунда выполняется по той же технологии, что используется для PCB платы.
Для смывки различных загрязнений можно использовать: деионизованную (без ионов) воду, изопропиловый спирт или ацетон, а также обычную зубную щетку.
Проверяем состояния элементов
После очистки контактов выполняется оценка их состояния. Выявляются дефекты PCB, повреждения её контактных площадок и маски. Для этого необходимо воспользоваться микроскопом (МС).
Наиболее подходящими, для этого, считаются стереоскопические микроскопы. Однако некоторые мастера предпочитают промышленные микроскопы.
К преимуществам стереомикроскопов можно отнести:
- получение объемного изображения, что удобно для оценки компонентов, их состояния, отсутствия повреждений;
- большое рабочее расстояние позволяет работать различным инструментом (паяльник, фен и др.);
- защитное стекло, для протекции оптики от испарений, брызг припоя, а также высокой температуры.
Ряд моделей стереомикроскопов выполняются тринокулярными. Это позволяет установить на них камеру и выводить изображение на монитор или записывать видео рабочего процесса.
Стереоскопический микроскоп Crystallite ST-7045 (слева) и промышленный микроскоп Saike Digital SK2700HDMI-T2H (справа)
К достоинствам промышленных микроскопов можно отнести:
- компактность;
- большое рабочее расстояние;
- наличие цифровой видеокамеры.
Для выбора подходящего именно вам микроскопа ознакомьтесь со следующими статьями: «Как выбрать бинокулярный и тринокулярный стереомикроскоп», «Выбираем промышленный микроскоп» и «Обзор цифровых микроскопов Saike Digital».
При оценке контактов проверяют их состояния, а также необходимость выполнения восстановительных работ, качества пролуженности контактов, а также общее состояние электронного компонента и PCB.
Необходимость ремонта плат с BGA
Замена BGA чипов в первую очередь обусловлена выходом их из строя, во вторую — обрывом паяного контакта. Повреждение контактного соединения приводит к тому, что микросхема перестает полностью или частично осуществлять свои функции. Это отрицательно влияет на функционирование самого устройства и может привести к его полному выходу из строя.
Признаки повреждения BGA компонентов:
- после включения устройства дисплей остается черным, хотя индикаторы включения горят;
- устройство самостоятельно отключается через несколько минут или секунд после включения;
- устройство самопроизвольно многократно перезагружается;
- нет изображения;
- устройство включается не с первого раза.
Причины выхода микросхем из строя:
- перегрев, вызванный нарушением охлаждения;
- подача высокого напряжения, вызванное коротким замыканием, пробоем изоляции и т.п.;
- физическое разрушение микрочипа, вызванное ударом или деформацией.
Причины повреждения шариковых выводов:
- нарушение технологии запайки (загрязнение, не верная температура, время нагрева или охлаждения);
- не верный подбор материалов (флюса, размера BGA шаров, припоя);
- разрушение из-за попадания влаги;
- механические воздействия (удары, деформация).
С помощью оловоотсоса
Чтобы сделать демонтаж микросхемы еще более эффективным, достаточно совместить оловоотсос и паяльник. Первый инструмент по форме напоминает клизму. Именно такое уникальное строение помогает всасывать припай при его расплавлении. Таким образом, не приходится постоянно очищать паяльник от припая, через некоторое время микросхема будет полностью демонтирована.
▍ Выводы
Собирать разные электронные устройства легко и просто, в случае набора-конструктора с готовой печатной платой, и при наличии хорошего паяльника, припоя и доступа в интернет, где можно найти ответы на возникающие вопросы.
Спасибо за внимание! Напишите в комментариях, какие схемы и конструкции будет интересно рассмотреть и собрать в будущих статьях и видео. Расскажите о своём опыте радиолюбительских поделок.
- Уроки электроники способствуют пониманию работы элементной базы, что позволяет с уверенностью ремонтировать электронные устройства.
- Принцип действия и алгоритмы диагностики транзисторов и других полупроводниковых приборов изучаем на занятиях по радиотехнике и схемотехнике.
- Читать схемы и разрабатывать электронику возможно, только с уверенным понимаем конструкции полупроводников.