- 2. Расчет режимов сварки (наплавки) в углекислом газе проволокой сплошного сечения
- Выбор тока, диаметра сечения электрода
- Диаметр электрода
- Калькулятор сварочного тока и диаметра электрода
- На прямой полярности
- Напряжение дуги
- Подогрев и термическая обработка
- Пространственное положение шва
- Расположение шва в пространстве
- Род и полярность сварочного тока
- Скорость сварки
- Схема дуговой сварки
- Температура окружающей среды
- Тип и марка электродов
- Тип, полярность тока
2. Расчет режимов сварки (наплавки) в углекислом газе проволокой сплошного сечения
В основу выбора диаметра электродной проволоки при сварке и наплавке в углекислом газе положены те же принципы, что и при выборе диаметра электрода при ручной дуговой сварке:
Расчет сварочного тока, А, при сварке проволокой сплошного сечения производится по формуле:
где а – плотность тока в электродной проволоке, А/мм2 (при сварке в СО2а=110 ÷ 130 А/мм2; dЭ – диаметр электродной проволоки, мм.
Механизированные способы сварки позволяют применять значительно большие плотности тока по сравнению с ручной сваркой. Это объясняется меньшей длиной вылета электрода.
Напряжение дуги и расход углекислого газа выбираются в зависимости от силы сварочного тока по табл. 6.1.
Таблица 6.1
Зависимость напряжения и расхода углекислого газа от силы сварочного тока
При сварочном токе 200 ÷ 250 А длина дуги должна быть в пределах 1,5 ÷ 4,0 мм. Вылет электродной проволоки составляет 8 ÷ 15 мм (уменьшается с повышением сварочного тока).
Скорость подачи электродной проволоки, м/ч, расчитывается по формуле:
где αР – коэффициент расплавления проволоки, г/А ч ;ρ – плотность металла электродной проволоки, г/см3 (для стали ρ =7,8 г/см3).
Значение αР рассчитывается по формуле:
Скорость сварки (наплавки), м/ч, рассчитывается по формуле:
где αН — коэффициент наплавки, г/А ч; αН = αР(1-Ψ), где Ψ — коэффициент потерь металла на угар и разбрызгивание. При сварке в СО2Ψ = 0,1- 0.15;FB — площадь поперечного сечения одного валика, см2. При наплавке в СО2 принимается равным 0,3 — 0,7 см2.
Масса наплавленного металла, г, сварке рассчитывается по следующим формулам:
при сварке:
при наплавочных работах:
где l – длина шва, см; ρ – плотность наплавленного металла (для стали ρ=7,8 г/см3); VН — объем наплавленного металла, см3.
Время горения дуги, ч, определяется по формуле:
Полное время сварки (наплавки), ч, определяется по формуле:
где kП – коэффициент использования сварочного поста, ( kП= 0,6 ÷ 0,57).
Расход электродной проволоки, г, рассчитывается по формуле:
где GH – масса наплавленного металла, г; Ψ – коэффициент потерь, (Ψ = 0,1 — 0,15).
Расход электроэнергии, кВт ч, определяется по формуле:
где UД– напряжение дуги, В; η– КПД источника питания: при постоянном токе 0,6÷0,7 , при переменном 0,8÷ 0,9; WO–мощность источника питания, работающего на холостом ходе, кВт. На постоянном токе Wо = 2,0÷ 3,0 кВт, на переменном – Wо= 0,2÷ 0,4 кВт.
Справочные сведения по оборудованию для сварки в СО2 приведены в табл. 4,5,7 приложения.
Выбор тока, диаметра сечения электрода
Токовая сила при использовании электродуговой ручной сварки — один из самых важных показателей, влияющих на рабочую производительность, качество шовного соединения. Чаще всего в комплект поставки сварочного оборудования входит инструкция по эксплуатации, в которой указываются рекомендуемые параметры.
Важно не забывать! Чем больше диаметр сечения электрода, тем шире получается сварной шов, глубина проварки меньше — хуже соединение в целом.
Пример соотношения тока, диаметра электрода, толщины материала
I т, А | 10-20 | 30-45 | 45-100 | 100-160 | 120-200 | 150-200 | 160-250 | 200-350 |
Dэл., мм | 1 | 1,5-2 | 3 | 3-4 | 4 | 4-5 | 5 | 6-8 |
T м, мм | 0,5 | 1-2 | 3 | 4-5 | 6-8 | 9-12 | 13-15 | 16 |
Диаметр электрода
Какой диаметр электрода выбрать зависит от толщины свариваемого металла, положения в котором будет выполняться сварка, типа соединения, размера детали и химического состава металла.
Толщина металла, мм | 1-2 | 3 | 4-5 | 6-8 | 9-12 | 13-15 | 16 и больше |
Диаметр электрода, мм | 1,5-2 | 3 | 3-4 | 4 | 4-5 | 5 | 6 |
Во время сварки во всех положениях кроме нижнего жидкий металл скапывает вниз. Поэтому для сварки в вертикальном, горизонтальном и потолочном положении независимо от толщины металла нельзя использовать электроды диаметром свыше 4 мм. Электроды толстого диаметра формируют большую каплю жидкого металла с которой сила поверхностного натяжения не справляется.
Для корня шва при многослойной сварке используют электроды диаметром 3-4 мм, следующие слои можно выполнять электродами большего диаметра.
Калькулятор сварочного тока и диаметра электрода
Надеюсь, мой калькулятор поможет начинающим освоить дуговую сварку.
На прямой полярности
Прямую полярность используют для сварки чугуна и глубокого проплавления основного металла. Для сварки низко-, среднеуглеродистых и низколегированных сталей толщиной 5 мм и более с использованием электродов с фтористо-кальциевым покрытием: УОНИ-13/45, УОНИ-13/55 и др.
Напряжение дуги
После расчета силы тока нужно просчитать длину дуги, которая определяется дистанцией между окончанием электродной проволоки, поверхностью соединяемых металлических образцов.
Важно! Осуществляя сварочные работы, нужно контролировать стабильность дуги, от которой зависит качество соединения.
Подбирая режимы ручной дуговой сварки, профессиональные сварщики рекомендуют поддерживать короткую сварочную дугу. Ее длина не должна превышать диаметр сечения электродной проволоки, но этого достичь достаточно сложно даже опытному сварщику. Оптимальный вариант — этот параметр должен быть между минимально возможной длиной короткой дуги и ее максимальной длиной, большей диаметра сечения электрода не более чем на 2 мм.
Пример отношения дуговой длины/диаметра сечения электрода
Dэл., мм | 1 | 1,5-2 | 3 | 3-4 | 4 | 4-5 | 5 | 6-8 |
L д., мм | 0,6 | 2,5 | 3,5 | 4 | 4,5 | 5 | 5,5 | 6,5 |
Подогрев и термическая обработка
При сварке стали, которая склонна к образованию закалочных структур, резкое охлаждение шва приводит к повышению внутренних напряжений и образованию трещин. Предварительный подогрев поверхности позволяет снизить разность температур и регулировать скорость охлаждения соединяемых деталей.
Для снятия внутренних напряжений используют различные методы термической обработки – полный или низкотемпературный отжиг, а также нормализацию.
Пространственное положение шва
Потолочный шов – самый сложный в исполнении, требующий высокой квалификации сварщика. Его выполняют короткими промежутками с движением электрода на себя, что позволяет контролировать длину дуги, процесс формирования шва и угол наклона электрода.
При выполнении вертикальных швов, расплавленный металл сварочной ванны стремится вниз. Соединение выполняют короткой дугой, с направлением движения снизу вверх. Сварку вертикальных поверхностей обычно осуществляют без предварительной подготовки кромок.
Расположение шва в пространстве
Расположение шва в пространстве влияет на выбор основных параметров режима ручной дуговой сварки. Ручную сварку используют для стыков во всех пространственных положениях, но наиболее удобным положением считается нижнее. Стоит учитывать положение шва в пространстве при расчете основных параметров и выборе электрода.
Род и полярность сварочного тока
Увеличение силы сварочного тока способствует росту глубины проплавления (провару). Род сварочного тока и его полярность также влияют на форму и размеры сварного шва. Если сварка металла производится постоянным током обратной полярности, то глубина проплавления получается на 40-50% больше, чем при сварке постоянным током прямой полярности из-за того, что на катоде и аноде происходит выделение разного количества теплоты.
Скорость сварки
Оптимальный скоростной режим выполнения работ подбирают исходя из толщины кромок соединяемых деталей. Сварочная ванна должна равномерно заполняться жидким металлом с плавным переходом к основной поверхности без наплывов и подрезов.
Медленная скорость движения электрода приводит к образованию большого количества жидкого металла, который будет препятствовать качественному провару кромок. При слишком быстром перемещении дуги свариваемые кромки не будут получать достаточного количества тепловой энергии, что приведет к образованию трещин после охлаждения.
Схема дуговой сварки
Схема наполнения шва соединения обуславливает способность получаемого соединения отдельных деталей воспринимать предполагаемые нагрузки, сказывается на деформировании шовной массы, параметрах внутреннего напряжения.
Шовные соединения могут отличаться по длине:
- короткие — до 30 см;
- средние — 30-100 см;
- длинные — от 100 см.
Зависимо от длины сварного шва техника его заполнения бывает разной.
Если одного прохода сваркой недостаточно для заполнения шовного соединения в полном объеме, тогда накладываются дополнительные швы.
- Многослойный шов — если количество слоев соответствует количеству проходов электродами.
- Многослойно-проходной шов — если для наложения некоторых слоев требуется несколько прохождений.
Температура окружающей среды
Все стали можно разделить на четыре группы согласно степени их свариваемости. Стали II, III и IV группы нельзя сваривать при температуре ниже -5 °C.
Тип и марка электродов
Электрод для ручной дуговой сварки представляет собой стержень из токопроводящего материала, покрытого специальной флюсовой обмазкой. В процессе выполнения работ электрод плавится, заполняя пространство между соединяемыми деталями. Назначение покрытия электрода – стабилизация сварочной дуги и защиты зоны расплава от негативного воздействия кислорода, который входит в состав атмосферного воздуха.
Каждому типу покрытия соответствует собственное буквенное обозначение, согласно требованиям международного стандарта ISO 2560:2009.
Тип, полярность тока
Данные параметры зависят от типа, толщины металла свариваемых деталей. При постоянном электротоке с обратной полярностью электрод выделяет больше тепловой энергии.
Ток постоянный:
- для соединения образцов из легированной стали, чтоб не допустить их перегрева;
- для сварки тонких металлических изделий, чтобы не допустить их прожигания.
Ток переменный:
- для заготовок из углеродистых сталей, с целью экономичности.
У многих сварочных устройств современной конструкции при помощи выпрямления переменного тока формируется на выходе сварочный ток постоянного типа.