5. Ультразвуковая сварка
Этот вид микросварки применяется для соединения деталей, нагрев которых затруднен, или при соединении разнородных металлов или металлов с прочными окисными пленками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.).
Неразъемные соединения образуются при совместном воздействии на инструмент механических колебаний высокой частоты и относительно небольших сдавливающих усилий. Сочетание этих воздействий приводит к выделению тепла за счет трения поверхностей, стиранию окисных пленок и сглаживанию неровностей с созданием чистых поверхностей, что интенсифицирует процесс образования активных центров и приводит к образованию соединения.
Рис. 6.10. Принцип ультразвуковой сварки: 1 – магнистрикционный преобразователь; 2 и 3 – концентраторы ультразвуковых колебаний; 4 – пуансон; 5 – вывод; 6 – пленка алюминия; 7 – подложка;k– узлы колебаний.
С помощью пуансона вывод прижимается к контактной площадке, прикладываются ультразвуковые колебания перпендикулярно направлению приложения давления с частотой (20 – 60) кГц. Для получения колебаний применяют магнитострикционный (20 кГц) или пьезоэлектрический (40 – 60)
кГц генератор колебаний, от которого кинетическая энергия через концентратор передается к месту сварки (рис. 6.10). В результате высокочастотного трения соприкасающиеся поверхности не только разогреваются, но и освобождаются от поверхностных пленок, обнажая свежие активированные поверхности. Соприкосновение обнаженных от разделительных пленок поверхностей приводит к прочному их соединению на атомарном уровне.
Основные параметры ультразвуковой сварки: амплитуда и частота колебаний инструмента, внешнее давление и температура, если используется внешний нагрев. Нагрев до (150 – 200) °C сокращает время и улучшает качество сварки. Время сварки подбирается экспериментально в диапазоне (0,3 – 0,5) с.
6. Микросварка расщепленным электродом
Суть процесса заключается в одностороннем подводе к зоне соединения сварочного тока от двух электродов, имеющих зазор порядка (100 – 300) мкм (рис. 6.11). Для образования настоящего сварного ядра необходимо заставить поток тока протекать через нижний из свариваемых металлов. Это достигается расстановкой электродов на расстоянии в (3 – 5) раз больше толщины свариваемого пакета.
Рис. 6.11. Сварка расщепленным электродом: Ic – сварочный ток; Fд – сила давления электродов; αс – зазор между электродами.
Принцип сварки расщепленным электродом сводится к разогреву свариваемых проводящих деталей протекающим током. Количество выделяющейся тепловой энергии определяется законом Джоуля – Ленца:
Q = I2Rt, (6.1)
где Q – энергия в тепловой форме, I – ток, R = RK RД RМ – сопротивление, t – время сварки; RK – контактное сопротивление электродов с деталью; RД – сопротивление току свариваемых деталей; RМ – сопротивление току между свариваемыми деталями.
Для образования настоящего сварного ядра необходимо заставить ток протекать через нижний слой свариваемых деталей. Это достигается установкой зазора между электродами
Поскольку медные контактные площадки на печатной плате имеют относительно большую проводимость, их нагрев затруднен. Поэтому, если предусматривать именно этот метод монтажной микросварки, приходится никелировать поверхность меди, чтобы увеличить выделение джоулева тепла.
В технологии микросварки расщепленным электродом следует учитывать следующие факторы:
при сравнительно малых усилиях сжатия и малых собственных электрических сопротивлениях соединяемых деталей тепло преимущественно выделяется на контактных сопротивлениях между деталями и между электродами и верхней свариваемою деталью;
при жестких режимах сварки (короткие и мощные импульсы тока) на недостаточно чистых свариваемых поверхностях возможны на начальном этапе испарения выплески металла, неустойчивость качества сварки;
режимы сварки существенно зависят от множества факторов: состояние поверхностей, размеры и формы электродов, усилие давления, форма, длительность и своевременность тока нагрева;
при разнородности металлов деталей по термо- ЭДС возможно проявление эффекта Пельтье в смещении сварной зоны в одну из деталей.
При сварке неизбежно выделяются пары органических веществ из диэлектрического основания монтажных подложек (печатных плат), которые конденсируются на сварочных электродах, образуя тонкую диэлектрическую пленку, достаточной толщины, чтобы сделать процесс неустойчивым. Поэтому электроды нужно периодически чистить.
Типичные режимы микросварки расщепленным электродом показаны в табл. 6.1.
Таблица 6.1
Оптимальные режимы сварки расщепленным электродом
Соединяемые металлы | Темпера- тура,°С | Удельное давление, МПа | Длительность сварочного импульса, с | Деформация вывода, % | |
Диаметр вывода присоединяемого элемента, мкм | Пленка | ||||
Au 40 | Au, Ni, Ag | 400 – 420 | 40 – 70 | 0,2 – 0,5 | 50 – 60 |
Al 40 | Au, Al | 450 – 550 | 15 – 40 | 0,1 – 0,5 | 60 – 70 |
Cu 40 – 100 | Au, Ni, Ag | 520 – 700 | 60 – 100 | 0,2 – 1,0 | 50 – 60 |
studfiles.net
Диффузионная сварка однородных металлических материалов
Главная » Статьи » Профессионально о сварке » Технологии сварки |
Рекомендуем приобрести:
Установки для автоматической сварки продольных швов обечаек — в наличии на складе! Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.
Сварочные экраны и защитные шторки — в наличии на складе! Защита от излучения при сварке и резке. Большой выбор. Доставка по всей России!
Медь находит самое широкое применение в электронной промышленности как конструкционный материал для изготовления различных узлов приборов. Для нее характерны высокая электро- и теплопроводность, малые газопроницаемость и газовыделение, коррозионная стойкость, немагнитность, высокая пластичность. Медь марок МБ, MB, MBK, Ml является основным материалом для изготовления анодов и анодных блоков, замедляющих систем, вводов энергии магнетронов, клистронов, ламп обратной волны, ламп бегущей волны, мощных генераторных и газоразрядных приборов и др. Широко используется она и в сочетании с разнообразными металлическими и неметаллическими материалами. Медь и ее сплавы составляют 90-95% от общего объема применения в электронике металлических материалов (в массовом измерении).Медь относится к числу материалов, ДС которых не вызывает особых затруднений. Равнопрочность соединений меди основному материалу достигается при ДС по режиму: Тсв = 850oС, Рсв = 7-8 МПа, t = 20 мин., V = 1,ЗЗх10-2 Па, обычно принимаемому за оптимальный.
Диффузионная сварка меди находит наиболее широкое и успешное применение при изготовлении составных пакетированных узлов СВЧ-приборов: замедляющих систем, анодных блоков и резонаторов.
Заготовки пакетированных высокочастотных систем сантиметровогодиапазона получают обычно вырубкой из листовой меди. После очистки поверхности они в необходимом количестве собираются в приспособлениях, обеспечивающих их точное взаимное расположение, и свариваются друг с другом по оптимальному режиму при температуре 850oС. Этот режим обеспечивает необходимую точность систем вплоть до средней части миллиметрового диапазона. В зоне соединения (рис. 10.1) сохраняется, как правило, граница раздела, но ее ширина такого же порядка, что и обычная межзеренная граница.
В то же время ДС меди при температурах выше 800oС и удельных давлениях более 5 МПа приводит к пластической деформации деталей порядка десятых долей — единиц процентов (рис. 10.2).
Высокочастотные системы миллиметрового и субмиллиметрового диапазонов отличаются миниатюрностью и высокой точностью. Ширина ламелей анодных блоков доходит до 0,2 мм. Еще более ажурны мелкоструктурные замедляющие системы, поперечные размеры их штырей составляют десятки микрон.
Поэтому проблема диффузионной сварки (ДС) с полным сохранением исходных размеров деталей при удовлетворительной прочности (пластичности) соединений является весьма актуальной для электронной промышленности.
В соответствии с представлениями о механизме и кинетике процесса ДС можно выделить следующие пути повышения прецизионности соединения при ДС: повышение класса чистоты обработки поверхностей; применение прослоев из пластичных материалов, в том числе расплавляемых при сварке; сварка в сверхвысоком вакууме.
Указанные приемы в той или иной степени облегчают и ускоряют развитие первой стадии ДС: очистку поверхностей от окисных и жировых пленок и развитие их фактического контакта. Более грубая подготовка поверхностей увеличивает время протекания первой стадии и общую длительность процесса сварки и в конечном итоге приводит к большей пластической деформации деталей.
Для разработки технологического процесса, гарантирующего получение вакуумноплотных соединений, важно определить моменты, в которые заканчивается процесс их формирования. Считают, что при диффузионной сварке процесс формирования соединений металлов с металлами и металлов с неметаллическими материалами, имеющих прочностные и вакуумные свойства, идентичные свойствам основного материала, завершен, если в результате диффузионного залечивания пор в контактной зоне стабилизируется поток водорода, протекающий через нее.
Для экспериментального исследования кинетики формирования соединений разработан специальный метод активного контроля, заключающийся в том, что в процессе сварки через контактную зону «продувается» поток газов из смеси гелия и водорода, контролируемый масс-спектрометром.
Момент прекращения потока гелия через зону соединения соответствует начальному моменту достижения вакуумной плотности (закрытию сквозных каналов), а стабилизация потока водорода — моменту завершения диффузионного взаимодействия и формирования соединения, идентичного основному металлу по вакуумной плотности и термостойкости. О соотношении технологических параметров, при которых имеют место эти моменты, можно судить по рисунку 10.4.
Следует отметить, что нет единого мнения об оптимальных режимах диффузионной сварки пар металлов, наиболее распространенных в электронной технике, — медь МБ медь МБ и медь МБ сталь Э.
С использованием методов математического планирования экспериментов, в частности центрального композиционного ротатабельного униформ-планирования второго порядка, получены регрессионные уравнения, позволяющие в широком интервале параметров рассчитывать наперед заданную прочность 0, 1 σ [МПа] (y1) и деформацию ε [%] (у2) при контролируемом уровне вакуумной плотности: для соединения медь МБ МБ при Т = 700 … 900 oС:
Применение прокладки из более мягкого материала, чем свариваемый, приводит к локализации в ней пластической деформации сжатия. Фактический контакт образуется при этом преимущественно за счет активной деформации и ползучести материала прокладки, заполняющего микронеровности соединяемых поверхностей, что существенно снижает минимально необходимый уровень давления сжатия и изменение формы деталей.
При ДС высокоточных узлов меди применяются промежуточные прослои золота или серебра. Серебро и тем более золото обладают более высокой способностью к релаксации напряжений в условиях сварки. Достоинством этих металлов является также высокая чистота поверхности, так как золото практически не окисляется, а окислы серебра диссоциируют уже при нагревании на воздухе.
Диффузионная сварка выполняется обычно через прослой золота 2-6 мкм, который гальванически наносится на одну из контактных поверхностей. При сварке порежиму Тсв = 500oС, P= 1 МПа, t= 10 мин., V= l,33×10-3 Па выдерживаются заданные допуски в пределах 5—10 мкм, соединения вакуумно-плотны, имеют надежный тепловой и электрический контакты.
Сварка пакетированных конструкций через прослои без них может успешно применяться для изготовления коаксиальных магнетронов обращенной конструкции, замедляющих систем типа «волновода», «гребенки», «встречных пластин», «штырь—кольцо» и других узлов магнетронов, ламп бегущей волны, ламп обратной волны.
ДС медных деталей производится также при изготовлении узлов других распространенных источников СВЧ-колебаний: клистронов, применяющихся в качестве малошумящих генераторов, мощных усилителей и генераторов непрерывного и импульсного действия, умножителей частоты.
В зависимости от требований к точности сеточных узлов, их жесткости, материала для их соединения применяются режимы ДС без прослоев или с прослоями (рис. 10.5). Последние применяются для соединения с сеткодержателями микросеток, так как малейшие деформации деталей при сварке существенно влияют на рабочую частоту приборов, а нередко и на их выходную мощность.
ДС через тонкие прослои золота, серебра и нерасплавленных припоев на их основе позволяет получить соединения с остаточными деформациями не выше 0,1% и сохранить первоначальную прозрачность сеток. В отличие от пайки, после сварки не изменяются поверхностные свойства сеток и исключено натекание металла на перемычки.
Применение расплавляемых прослоев перспективно для ДС однородных и разнородных металлических материалов при получении высокопрочных прецизионных соединений.
Если сварка меди через тонкий прослой серебра выполняется при температуре, несколько превышающей Тпл эвтектики Ag-Cu (но остающейся ниже температуры плавления серебра), то развивается процесс контактно-реактивного плавления. Такая технология по существу аналогична контактно-реактивной пайке, но при ДС сохраняется возможность в широком диапазоне изменять давление сжатия деталей и тем самым воздействовать на физико-химические процессы, протекающие в контакте.
Особенностью кинетики этих процессов является то, что жидкая фаза возникает после образования фактического контакта поверхностей и химического взаимодействия между ними. Высокопрочные, термостойкие соединения получаются после полного растворения жидкой прослойки в основном материале.
Серебро обладает ограниченной растворимостью в меди (не более 8%), поэтому толщина его слоя должна быть небольшой. Эксперименты по ДС и опыт пайки показали, что оптимальной является толщина гальванически осажденного на медь слоя серебра 4—7 мкм. При температуре процесса 800oС (V = 1,ЗЗх10-2 Па) равнопрочность соединения достигается при времени сварки 25—30 мин. и давлении сжатия 4 МПа.
При снижении давления сжатия прочность соединения несколько падает. Но и после сварки по приведенному режиму (Рсв = 4 МПа) остаточная деформация деталей не превышает 0,1%, что позволяет рекомендовать такую технологию для получения не только прецизионных соединений меди, но и ее сочетаний с никелем, коваром, сталями.
Плюсы
Важный плюс в том, что проволока, газ, электроды и остальной расходный материал не нужен. Это делает диффузионную сварку финансово выгодной.
Еще такой метод более экологичен, поскольку отсутствуют выбросы вредных веществ в атмосферу.
Еще одно преимущество заключается в низком потреблении энергии, что выгодно с экономической стороны. При диффузионном способе расходуются намного меньшее количество энергии, чем при остальных.
При помощи диффузионной сварочной установки можно одновременно обработать несколько видов металлов. Не нужно переживать о разнице в свойствах металлов.
Возможность использовать детали разных размеров — еще одно несомненное достоинство. Толщина длинна или ширина металла не имеет значения. Можно сварить как мелкие, так очень большей детали.
Нужно только иметь установку нужного размера. Такой способ подходит для разных типов соединения. Например тавровое, внахлест или стыковое.
Нужно помнить о том, что качество шва при данном виде сварки всегда очень высокое. Электрическая и газовая сварка уступает по качеству.
Швы имеют достаточно эстетичный вид после диффузионной сварки. Благодаря этому стыки не нуждаются в обработке.
Следующее преимущество это полная безопасность во время сварочных работ. Полная защита от огня, брызг раскаленного металла или тока. Все опасные действия проходят в закрытой установке.
Вы также ограждены от химических испарений выделяемых в процессе сварочных работ. Что сохраняет ваше здоровье.
Полиэтиленовые трубы
Свойства полиэтилена (ПЭ) имеют широкое многообразие, но особо можно выделить два: высокую химическую стойкость и неспособность вступать в электрохимические реакции, благодаря чему исключается возможность появления коррозии, присущей стали. Далее приведены Свойства полиэтилена, наиболее полно характеризующие полиэтилен как материал, применяемый для изготовления труб и соединительных деталей. Свойства полиэтилена — Плотность Свойства …
Гидравлический расчет полиэтиленовых труб выполняется с целью определения потерь напора потока, на основании чего в дальнейшем выбирается диаметр труб и марка повысительного (или вакуумного) насоса. Потери напора Н, мм вод. ст., в общем случае течения жидкости равны: Н = i · l hм.с. hв hг.в. hсв.н. >
hг …
Фланцевое соединение полиэтиленовых труб. Как известно, полиэтиленовые трубы имеют два основных вида соединения, разъемное и неразъемное. Неразъемное соединение производится при помощи сварочного процесса при котором трубы сплавляются между собой, образуя надежное единое соединение.
Седелка электросварная представляет из себя деталь полиэтиленового трубопровода применяемая для врезки в основную трубу второстепенного отвода. Чтобы не резать трубу и не тратиться на переходные тройники, которые стоят значительно дороже, используют седелки.
Электромуфтовая сварка применяется для соединения труб диаметром от 20 мм и выше, независимо от толщины стенки. При этом способе сварки работы должны производиться при температуре воздуха от минус 10 до 30 °С. На приведенные температурные интервалы, как правило, рассчитаны стандартные технологические режимы сварки. При более широком интервале температур сварочные …
Электросварные фитинги предназначены для неразъемной сварки полиэтиленовых труб при строительстве систем водо- и газоснабжения. При сварке деталями с закладными электронагревателями, трубы соединяются между собой при помощи специальных полиэтиленовых соединительных деталей, имеющих на внутренней поверхности встроенную электрическую спираль из металлической проволоки.Получение сварного соединения происходит в результате расплавления полиэтилена на соединяемых поверхностях …
Транспортировка и хранение полиэтиленовых труб осуществляется любым видом транспорта с закрытым или открытым кузовом (в крытых или открытых вагонах) с основанием, исключающим провисание труб, а также водным транспортом с применением несущих средств пакетирования.
Стыковая сварка полиэтиленовых труб относится к неразъемным способам соединения и производится путем нагрева при помощи специального сварочного оборудования торцов свариваемых частей, трубы и (или) фитинга до вязкотекучего состояния полиэтилена, и последующего их соединения под давлением. Встык можно варить только трубы и фитинги одинакового диаметра и SDR, изготовленные из одной марки …
Страница:
Технология диффузионной сварки
Схема процесса диффузионной сварки металлов представляет собой следующую последовательность. Перед началом сварки соединяемые детали собираются с помощью особого приспособления, способствующего передаче давления в место их стыковки. Затем заготовки вакуумируют и подвергают нагреву до требуемой температуры с последующим приложением давления в течение определенного промежутка времени.
Отдельные случаи требуют дополнительной выдержки изделия в температуре сварки после снятия с него давления. Это необходимо для полноты протекания процесса рекристаллизации, что способствует формированию более качественных соединений. Завершается сварочный цикл охлаждением сборной конструкции в зависимости от типа применяемого оборудования диффузионной сварки с помощью инертной среды, вакуума либо воздуха.
Образование сварного соединения этим способом сварки условно можно разделить на две стадии. В ходе первой из них создается физический контакт соединяемых элементов. При этом каждая точка свариваемого металла должна находиться от другой на расстоянии, позволяющем взаимодействие между атомами.
Вторая стадия заключается в формировании структур образуемого соединения в ходе операций релаксации. К определяющим параметрам процесса диффузионной сварки в вакууме относят давление, длительность и температуру нагревания, рельеф соединяемых поверхностей и состояние среды, в которой осуществляется сварка.
Давление, подаваемое на контактирующие детали, с учетом видов свариваемых металлов и температуры, может изменяться в широком диапазоне. Осадка заготовок производится чаще всего при помощи систем пневматики. Температура обычно составляет чуть больше половины от температуры плавления, до 80% для сварки однородных металлов и в пределах 70% для разнородных и более легкоплавких материалов.
Время действия температур измеряется в пределах от нескольких минут до нескольких десятков. Нагрев в установках диффузионной сварки осуществляется, как правило, индукционным током, а также возможен с помощью обычного сопротивления, электронного луча, электротока, пропускаемого через изделие, и прочих источников.
Предварительная обработка заготовок под сварку также оказывает заметное влияние на ход диффузионного процесса. Это отражается в структурных изменениях их поверхностного слоя и ходе протекания физического контакта материалов. В ходе подготовки свариваемых деталей любым из способов (химическим, механическим, электролитическим и пр.) возможно формирование поверхностных пленок из оксидов.
В случаях недостаточной интенсивности диффузионных процессов в соединяемых деталях с резко отличающимися коэффициентами линейного расширения материалов, а также при наличии возможности образования хрупкости в шве, эффективно использование между ними промежуточного слоя.
Это может быть прокладка из фольги, порошковый подслой и др. Данный метод целесообразен при сварке как металлов и их сплавов, так и в отношении неметаллических материалов. Так, к примеру, сваривают кварцевые заготовки через прокладку из меди. Исходя из свойств свариваемых материалов и промежуточного слоя, определяют параметры такого процесса.
Установка трубы в позиционер
Свариваемые трубы и детали должны быть соосны, без перекосов во избежание непровара. Закрепление труб в позиционере является необходимой операцией.
Он позволяет сцентрировать и устранить овальность свариваемых труб, помешать любому движению соединения во время сварки и остывания, предотвратить провисание трубы, защитить соединение от случайных ударов, соблюсти необходимую соосность свариваемых труб и детали в процессе сварки.
Установка труб с перекосом является одной из причин некачественной сварки. Электромуфтовая сварка труб с чрезмерным скосом может привести к смещению и замыканию витков спирали , вытеканию расплава из зоны сварки и пр.
Закрепление труб в позиционер
При сварке труб большого диаметра так же необходимо обеспечить ненапряженное положение сопрягаемых деталей, т.е. концы труб, входящие в муфту не должны находиться под воздействием изгибающих напряжений и под действием усилий от собственного веса. При необходимости применять подставки, упоры или подходящие удерживающие приспособления.
Следует соблюдать не напряженную фиксацию сварных соединений до истечения времени остывания стыка. Напряженное положение вставленных в муфту концов труб может привести к некачественному соединению.
Центрация труб при сварке электросварных фитингов производится до величины, позволяющей без чрезмерного усилия надеть муфту на конец трубы.
Монтаж может осуществляться посредством равномерных по периметру торцевой части ударов пластиковым молотком.
Если надвижение муфты на трубу происходит с чрезмерным усилием, то смещение, замыкание или обрыв витков спирали с большой вероятностью может иметь место.
Недостаточное введение трубы в муфту является одной из причин некачественной сварки. Полноту введения трубы в муфту контролируется по отметке заранее сделанной маркером на поверхности трубы.