Технология ультразвуковой сварки — Сварпласт

Технология ультразвуковой сварки - Сварпласт Распайка

Основные элементы машин для узс:

  • сварочный узел (акустический узел),
  • опора, механизм давления,
  • механизм перемещения подвижных элементов,
  • механизм включения и выключения УЗК,
  • вспомогательное устройство
  • станина (корпус).

Машины для УЗС пластмасс делятся на машины для точечной контурной прессовой сварки, шовной и шовно-шаговой сварки. Применяются переносные установки, например, ручные пистолеты небольшой мощности. Мощность машин от 100 Вт до 1,5 кВт. Наиболее распространенной частотой сварочных машин является 20-22 кГв.

Важнейшим узлом, составляющим основу и заключающим в себе специфику оборудования и технологию ультразвуковой сварки пластмасс, является электромеханическая колебательная система (сварочный узел). Электромеханическая колебательная (акустическая система) служит для преобразования электрических колебаний ультразвуковой частоты, вырабатываемых ультразвуковым генератором, в механические колебания той же частоты.

Ультразвуковыми являются колебания, частота которых превышает 16000 Гц (4,5). Кроме того, акустическая система выполняет функции передачи этой энергии в зону сварки, согласования сопротивления нагрузки с внутренним сопротивлением системы и геометрических размеров зоны ввода энергии с размерами преобразователя-излучателя.

Ультразвуковые колебания представляют собой упругие волны, распространяющие в любой материальной среде, находящейся в твердом, жидком или газообразном состоянии. Возникновение упругих волн обусловлено тем, что при смещении некоторой точки упругой среды под действием внешнего усилия возникают силы, стремящиеся возвратить точку в положение равновесия.

Преобразование электрической энергии в энергию механических упругих колебаний основано на использовании магнитострикционного или пьезокерамического эффекта. Не останавливаясь на физической сущности этих явлений, подробно освещенной в специальной литературе, укажем только, что они характерны для ферромагнитных (в случае магнитострикции) и пьезокерамических (в случае электрострикции) веществ.

Читайте также:  Пайка латуни: чем паять? Латунные припои и пошаговая инструкция пайки паяльником. Как спаять ее оловом?

Если эти вещества претерпевают некоторую деформацию, то их магнитные или электрические свойства меняются (прямой магнитострикционный эффект). И, наоборот, если эти вещества поместить в магнитное или электрическое поле, то в них возникает механическая деформация, вызывающая изменение размеров тела (обратный магнитострикционный эффект).

Трансформатор упругих колебаний – Усилитель -является согласующим акустическим элементом между преобразователями и волноводом, и служит для согласования параметров преобразователя и волновода, а также для увеличения амплитуды колебаний на его выходном торце.

В большинстве случаев используются ступенчатые трансформаторы упругих колебаний, имеющие наибольший коэффициент усиления, равный 4-6 (отношение амплитуды на выходе к амплитуде на торце). Трансформаторы изготавливаются из ст.45; 30ХГСА, 40Х и с волноводами они соединяются с помощью резьбовых шпилек.

Волновод-инструмент предназначен для усиления амплитуды смещения выходного торца трансформатора и передачи механической энергии от последнего к нагрузке — в данном случае к месту, где производится ультразвуковая сварка. Рабочий торец волновода может иметь различную форму в зависимости от свариваемого изделия и вида ультразвуковой сварки (точечная, шовная).

Расчеты трансформаторов и волноводов можно найти в специальной литературе. Коэффициент усиления у таких волноводов составляет порядка 5-10, при этом амплитуда на конце волновода при холостом ходе должна быть 30-40 мКм.

Материал, предназначенный для изготовления волноводов и трансформаторов, должен обладать хорошими упругими свойствами, низким дескрементом затухания, высокой усталостной прочностью, хорошей обрабатываемостью резанием и невысокой стойкостью. К таким материалам относятся ст45, ЗОХГСА, 40Х, а также алюминиевые и титановые сплавы.

Пьезокерамические преобразователи имеют принудительное или естественное воздушное охлаждение.

Основное назначение опоры — фиксация изделия при сварке. В некоторых случаях опора рассматривается как активный элемент волноводно-акустического тракта. Опора может использоваться для подогрева или охлаждения. Поскольку опора участвует в распределении энергии среди элементов колебательной системы, ее можно использовать для получения информации о ходе процесса сварки.

Сварочный узел или опора должны иметь возможность перемещения. Подвижному элементу сообщается движение от механизма перемещения при помощи автоматического привода — электрического, пневматического или гидравлического.

В заключение необходимо отметить, что мы обладаем всеми необходимыми навыками, опытом и знаниями, чтобы разработать дополнительные приспособления и механизмы, отвечающие конкретным задачам и требованиям клиента, консультировать и оказывать техническую поддержку. Наши специалисты готовы предложить оптимальные технические решения с учетом всех особенностей запросов каждого клиента.

Особенности сваривания полимеров с использованием ультразвука

Наиболее широкий спектр использования у ультразвуковой сварки полимеров. К ее достоинствам следует отнести невозможность перегрева материалов, способность соединять кромки в местах с трудным доступом и изделий, имеющих инородные покрытия. Помимо этого сварка ультразвуком способствует обработке материалов, обладающие небольшим интервалом в ходе кристаллизации.

Принцип работы оборудования для ультразвуковой сварки пленок полимеров следующий. Свариваемые листы накладываются друг на друга и сильно прижимаются к опоре. К ним с требуемым усилием подводится сварочный инструмент, имеющий соединение с устройством преобразования ультразвука.

Оно приводится к действию с включением генератора. От напряжения, действующего с частотой ультразвука, растет полимерная эластичность. Причем в сварке тонколистных пленок она распространяется на весь объем детали между опорой и инструментом, а у изделий с большими толщинами – только на зону контакта свариваемых кромок. Для лучшего сцепления при соединеии крупных заготовок на их кромки могут специально наноситься неровности.

В начале ультразвуковой сварки пластмасс происходит физическое взаимодействие поверхностей с активацией молекул полимера из-за разрывания химических связей. Следующим этапом служит химическое реагирование свариваемых материалов между собой, которое переходит впоследствии во взаимное проникновение.

Деформации полимерных материалов под действием частоты ультразвуках провоцируют их нагревание до температуры, необходимой для кристаллического расплавления либо перехода пластмассы в вязкотекучее состояние. Одновременно начинается диффузный процесс отдельных частей макромолекулы с перемешиванием вязкотекучих составов соединяемых полимеров.

Свариваемость материала определяется размерами таких частей, чем они больше, тем лучше качество сварного шва. Прочность получаемого соединения определяется как физико-механическими характеристиками объектов сварки, так и возможностями аппарата ультразвуковой сварки.

Необходимые предпосылки для формирования качественного сварного шва создаются под действием механики колебаний ультразвукового преобразователя. Полученная таким образом энергия вибрации образует напряжения среза и сжатия (растяжения), которые способствуют превышению предельной упругости полимеров.

При ее достижении, в районе соприкосновения соединяемых пластмасс образуется пластическая деформация. Ее результатом, а также влияния ультразвуковых колебаний, служит расширение областей непосредственного контакта с одновременным удалением с них газов, поверхностных окислов, органических и жидкостных пленок. Все это содействует прочности образуемого шва.

Советуем изучить — Генератор переменного тока

Осуществляется поставка разработанного оборудования для следующих технологических операций:

  • ультразвуковой сварки пластмасс (полистирола, АБС-пластика, полиэтилена, лавсана, капрона и т.п.), применяемых в пищевой, химической, авиационной, автомобильной и других отраслях промышленности;
  • ультразвуковой резки термопластичных материалов-полимеров различных марок, бумаги, пленок и др.;
  • армирования пластмасс металлами, развальцовки заклепок из полимера, нарезания резьбы в пластмассе, соединение пластмасс с металлами;
  • изготовление нетканых материалов на основе полипропилена, капрона, лавсана и др., с последующим их соединением между собой ультразвуком;
  • ультразвуковым тиснением на полимерах и коже.

Способ УЗС пластмасс заключается в том, что электрические колебания УЗ частоты (18-50 Кгц), вырабатываемые генератором, преобразуются в механические колебания сварочного инструмента — волновода и вводится в свариваемый материал. Здесь часть энергии механических колебаний переходит в тепловую, что приводит к нагреву зоны контакта соединяемых деталей до температур вязкотекучего состояния.

Для обеспечения надлежащих условий ввода механических колебаний и создание тесного контакта свариваемых поверхностей прикладывается давление между волноводом и опорой. Такой контакт обеспечивается статическим давлением Рст. рабочего торца волновода на свариваемые детали.

Это давление способствует также концентрации энергии в зоне соединений. Динамическое усилие F, возникающее в результате колеблющегося волновода, приводит к нагрузу свариваемого материала, а действие статического давления Рст. обеспечивает получение прочного сварного соединения.

Механические колебания и давление в этом случае действуют по одной линии перпендикулярно к свариваемым поверхностям. Такая схема ввода энергии применяется для УЗС пластмасс в отличие от «металлической схемы, когда механические колебания действуют в плоскости соединяемых поверхностей, а давление перпендикулярно к ним. Подвод энергии от волновода может быть односторонним и двусторонним.

По характеру передачи энергии и распределению ее по свариваемым поверхностям УЗС делится на контактную и передаточную.

Возможность передачи механической энергии к зоне сварки зависит от упругих свойств и коэффициента затухания колебаний и свариваемых материалах. Если полимер характеризуется низким модулем упругости и большим коэффициентом затухания, то сварное соединение можно получить лишь на малом удалении от плоскости ввода колебаний.

Сварка по такой схеме называется контактной УЗС. Контактная УЗС обычно применяется для соединения изделий из мягких пластмасс, таких как полиэтилен полипропилен ПВХ, а также пленок и синтетических тканей небольшой толщины — от 0,02 мм до 5 мм. При этом способе сварки наиболее распространены соединения внахлестку.

Если полимер обладает высоким модулем упругости и низким коэффициентом затухания, то сварное соединение можно получать на большом удалении от ввода механических колебаний. сварка по такой схеме называется передаточной УЗС. Передаточную сварку рекомендуется применять для соединения объемных деталей из жестких пластмасс, таких как полистирол, полиметилметакрилат, капрон и др.

Установлено, что развитие и образование сварного соединения зависит от степени концентрации напряжений в зоне сварки и может быть интенсифицировано за счет создания искусственных концентраторов напряжения. Наиболее распространенным способом сварки с использованием искусственных концентраторов является сварка с разделкой кромок, причем наилучшие результаты получаются, когда одна из деталей имеет V-образный выступ.

В зависимости от перемещения волновода относительно изделия УЗС разделяется на прессовую и непрерывную.

Прессовая сварка выполняется за одно движение волновода и применяется как для контактной, так и передаточной сварки.

Непрерывная сварка обеспечивает получение непрерывных протяженных сварных швов за счет относительного перемещения волновода и свариваемых изделий и применяется для сварки изделий из полимерных пленок из синтетических тканей, мешков, фильтров и т.д. Здесь применяется как ручная, так и механизированная сварка. Для непрерывной сварки используются схемы с фиксированной осадкой и фиксированным зазором.

Возможность получения сварных соединений определяется количеством тепловой энергии, выделяющейся в зоне соединения и теплоотводом из этой зоны. Так как количество выделяющейся в зоне сварки энергии определяется количеством энергии, вводимой в свариваемое изделие, то возникает необходимость дозирования последней.

По принципу дозирования вводимой механической энергии ультразвуковая сварка подразделяется на сварку:

  • с фиксированным временем протекания ультразвукового импульса;
  • с фиксированной осадкой;
  • с фиксированным зазором;
  • с дозированием энергии по кинетической характеристике (по изменению амплитуды смещения опоры).

Основными параметрами ультразвуковой сварки, характеризующими выделение энергии в зоне соединения, является: амплитуда колебаний рабочего торца волновода А (мкм; частота колебаний f (кГц); продолжительность ультразвукового импульса t св/с/ или в случае непрерывной сварки — скорость сварки V св. /м/с/; сварочное статическое давление Рст. /Па/ или усиление прижатия F /н/ волновода к материалу.

Дополнительные параметры режима сварки — размеры, форма и материал опоры и волновода, материал теплоизоляционных прокладок; температура предварительного подогрева волновода и т.д.

Основные параметры режима взаимосвязаны. Время, необходимое для сварки, зависит от амплитуды колебаний и сварочного давления. При более высоких амплитудах необходимые свойства сварных соединений могут быть достигнуты при меньшем времени сварки, и наоборот.

Определяющим параметром режима ультразвуковой сварки является амплитуда колебаний рабочего торца волновода, которая выбирается в пределах 30-70 мкм. Оптимальному значению амплитуды соответствует максимальная прочность и наилучшее качество сварного соединения.

Амплитуда колебаний, необходимая для обеспечения качественной сварки, связана с величиной сварочного давления и, кроме того, зависит от геометрических размеров свариваемых деталей, типа свариваемых полимеров и опоры, определяющих распределение характеристик звукового поля.

Оптимальные параметры режима сварки зависят от свойств свариваемого материала, толщины и формы изделий и других факторов и устанавливаются в каждом конкретном случае экспериментально к реальным изделиям. Оценка режима обычно проводится по показателям прочности сварного соединения. Кроме того, проверяют его на герметичность, деформацию и другие характеристики.

Свойства сварных соединений зависит не только от параметров режима сварки, но и от рабочего цикла. Рабочий цикл определяется последовательностью приложения давления, включения, прохождения и выключения ультразвукового импульса, выдержки изделия под давлением и снятия давления. Цикл сварки закладывается в основу выбора схемы механизма давления и включения ультразвуковых колебаний сварочных машин.

Наиболее распространенный рабочий цикл ультразвуковой сварки — статистическое давление — ультразвук. Статистическое давление Рст. прикладывается до включения ультразвуковых колебаний, остается постоянным в течение всего цикла и снимается с запаздыванием, после окончания формирования сварного соединения.

При цикле ультразвук — статистическое давление ультразвуковые колебания включаются до приложения давления. Первоначальное включение ультразвука позволяет очистить свариваемые поверхности от загрязнений.

При сварке изделий из жестких полимеров, с целью уплотнения и повышения прочности сварного шва непосредственно после выключения ультразвуковых колебаний, увеличивается давление на волновод. Повышенное давление (ковочное усилие) должно следовать за выключением ультразвуковых колебаний через небольшой, строго контролируемый интервал времени.

При относительно большом времени применение проковки не дает результатов, так как свариваемый материал успевает остыть до ее начала. При очень малом времени возможно выдавливание расплавленного материала из места сварки под действием значительного ковочного усилия.

В этом случае возможны выплески и прожоги полимера. Такой рабочий цикл целесообразно использовать при необходимости получить герметичный шов на объемных деталях, выполненных из ударопрочного полистирола. При этом применяются специальные разделки шва в виде замковых и клиновидных канавок.

Возможна сварка синтетических тканей на основе капрона, нитрона, лавсана, полипропилена, хлорина и т.д. широко применяется для изготовления изделий технического назначения: фильтров, одежды, брезентов, палаток, а также клапанов, воротничков, петель, швов рукавов и т.п.

Соединение тканей нитками имеет ряд недостатков: отсутствие герметичности, образование гофров на шве, обрыв нитей при больших скоростях сшивания и т.д.

УЗС синтетических тканей выполняют двумя способами: 1) ткань неподвижна, двигается УЗ инструмент-пистолет; 2) ткань подвижна, сварочная головка закреплена на стационарной установке. В этом случае сварка может быть шовной, шовно-шаговой и профильно-прессовой. Свариваются ткани как полностью натуральные, так и с добавкой до 50% хлопка (толщина ткани — 40 мкм до 4000 мкм).

Соединение пластмасс с металлами могут осуществляться посредством запрессовки металлических деталей в пластмассу: при помощи термопластичных заклепок; при помощи винтов, устанавливаемых в отверстие с резьбой, полученной ультразвуковым формованием; сваркой металлических деталей через предварительно нанесенную на них пластмассу (металлопласты).

При запрессовке металлических деталей в термопласте предварительно сверлят отверстие, которое служит направляющим. В него же для устранения наплывов и заусенцев на поверхности изделия вытесняется пластмасса.

При заклепочном соединении металлических деталей с пластмассовыми в первой детали делают отверстие, а во второй стержень заклепки, выполненный заодно с пластмассовой деталью. Металлическую деталь надевают на этот стержень, а в выступающую часть стержня вводят ультразвуковые колебания.

Ультразвук может быть использован для нарезания резьбы в пластмассах. Для этой цели в пластмассовой детали сначала сверлится отверстие, диаметр которого меньше наружного диаметра резьбы (например, для резьбы М4 сверлится отверстие диаметром 3,2 мм). Под воздействием ультразвуковых колебаний, которые передаются через волновод к головке винта, и приложенного давления полимер разогревается до вязкотекучего состояния, приобретая форму резьбы.

При сварке мягких пластмасс, характеризующихся низким модулем упругости и большим коэффициентом затухания ультразвуковых колебаний, в основном, используется контактная ультразвуковая сварка. Типичными представителями этих пластмасс являются полиэтилен высокой и низкой плотности, полипропилен, пластифицированный поливинилхлорид и др.

Характерная особенность ультразвуковой сварки этих материалов состоит в значительном тепловыделении не только на границе раздела свариваемых материалов, но и в объемах, прилегающих к волноводу и опоре. Это приводит к существенной деформации поверхностей свариваемых деталей, проявляющейся во внедрении рабочего торца волновода в пластмассу с вытеснением пластицированного материала, причем величина внедрения может составлять более 50% от суммарной толщины деталей.

Поэтому ультразвуковую сварку мягких пластмасс рекомендуется использовать для соединения по контору, чаще с одновременным образованием материала, выступающего за внешний контур рабочего торца волновода. Такие соединения широко применяются при изготовлении емкостей, контейнеров и туб, использующихся, как правило, для хранения пищевых продуктов, косметики или продуктов бытовой химии.

Плюсы и минусы сварки ультразвуком

Технология ультразвуковой сварки - Сварпласт
Процесс ультразвуковой сварки металлов отмечается рядом преимуществ. К их числу можно отнести такие аспекты:

  • УЗ-сварка помогает соединять тонкие детали вместе с конструкциями, изготовленными из более плотного материала;
  • возможно проведение сварочных работ по присоединению элементов, изготовленных из разных материалов;
  • сварка ультразвуком помогает в производстве изделий, обладающих высоким уровнем тепловой и электрической проводимости;
  • при проведении сварочных работ при помощи ультразвука не используется тепло – свариваемые детали соединяются друг с другом без плавления поверхности;
  • энергия, расходуемая в процессе сварки, используется более экономно;
  • сварка ведётся без использования присадочных материалов и не требует создания особой атмосферы в месте, где будут идти работы;
  • перед ультразвуковой сваркой металлические конструкции не нужно предварительно очищать.

Советуем изучить — Диагностика электрооборудования автомобиля — что, как, зачемВпрочем, у сварки металлических деталей с помощью ультразвука, есть и свои недостатки. Самый главный из них – возникающие сложности при работе с конструкциями, изготовленными из материалов, которые обладают высокой проводимостью тепла.

В итоге, становится очевидно, что ультразвуковая сварка способна обеспечивать столь же высокопрочное и надёжное соединение металлических деталей, которое достигается при обычном способе сваривания. Преимущества сварки металлов ультразвуком очевидны. Она не только помогает грамотно расходовать энергию, затрачиваемую на сварочный процесс, но и позволяет работать с конструкциями, обладающими разной толщиной и изготовленными из различных материалов.

Принцип действия ультразвуковой сварки и классификация

С физической точки зрения, ультразвуковая сварка проходит в три стадии:

  • нагрев изделий, активизация диффузии в зоне соприкосновения;
  • образование молекулярных связей между вязкотекучими поверхностными слоями
  • затвердевание (кристаллизация) и образование прочного шва.

Существует несколько классификаций ультразвуковой сварки ультразвуковой сварки.

По степени автоматизации различают:

  • Ручная. Оператор контролирует параметры установки и ведет сварочный пистолет по линии шва.
  • Механизированная. Параметры задаются оператором и поддерживаются установкой, детали подаются под излучатель.
  • Автоматизированная. Применяется на массовом производстве. Участие человека исключается.

Схемы колебательных систем для сварки ультразвуком

По методу подведения энергии к рабочей зоне выделяют:

  • односторонняя;
  • двусторонняя.

По методу движения волновода классифицируют:

  • Импульсная. Работа короткими импульсами за одно перемещение волновода.
  • Непрерывная. Постоянное воздействие излучателя, волновод двигается с постоянной скоростью относительно материала.

По споосбу определения количества энергии, затрачиваемой на соединение, существуют:

  • по времени воздействия;
  • по величине осадки;
  • по величине зазора;
  • по кинетической сотавляющей.

В последнем случае количество энергии определяется предельной амплитудой смещания опоры.

По способу подачи энергии в рабочую зону различают следующие режимы ультразвуковой сварки:

  • Контактная. Энергия распределяется равномерно по всему сечению детали. Позволяет сваривать детали до 1,5 толщиной. Применяется для сваривания внахлест мягких пластиков и пленок.
  • Передаточная. В случае высоких значений модуля упругости колебания возбуждаются в нескольких точках. Волна распространяется внутри изделия и высвобождает свою энергию в зоне соединения. Используется для тавровых швов и соединений встык жестких пластиков.

Технология ультразвуковой сварки - Сварпласт
Схема точечной ультразвуковой сваркиТехнология ультразвуковой сварки - Сварпласт
Схема точечной ультразвуковой сваркиТехнология ультразвуковой сварки - Сварпласт

Схема установки для роликовой сварки ультразвуком

Способ подачи энергии колебаний в зону контакта заготовок определяется модулем упругости материала и коэффициентом затухания механических колебаний на ультразвуковых частотах.

Сферы применения уз-сварки

Сварка металла ультразвуком нашла своё применение в промышленном производстве и при монтаже технического оборудования. Данный способ сваривания нескольких конструкций оказался незаменим при работе с материалами, обладающими высокой проводимостью тепла. Наибольшее распространение сварка металла ультразвуком получила в следующих ситуациях:

  • изготовление электропроводящих систем (проводится на промышленных предприятиях, которые специализируются на производстве бытовой техники, электроники и комплектующих элементов для электроприборов);
  • изготовление жгутов электропроводов и кабельных систем (широко распространено для нужд автомобильной промышленности, медицинских исследований, производства авиационной и космической техники, информационных систем);
  • сваривание шинопроводов, предохранительных элементов, соединительных контактов и устройств включения/выключения (осуществляется при изготовлении элементов питания, а также осветительных систем);
  • сварка пластин и фольги для элементов питания (проводится для производства аккумуляторов с разным уровнем ёмкости. Чаще всего сваривают детали из меди и алюминия – металлов, которые имеют низкую теплопроводность. Это приводит к тому, что для сварки пластин и фольги приходится затрачивать больше времени и энергии);

изготовление конденсаторов, теплоизоляционных покрытий и уплотнённых проводов (покрытия, изготовленные при помощи УЗ-сварки, особенно востребованы среди производителей продуктов, нуждающихся в защите от высоких температур. В частности, такие комплектующие элементы нашли своё применение в производстве взрывных устройств. Уплотнённые провода и конденсаторы получили высокий спрос среди компаний из микроэлектронной сферы);

сваривание труб (используется при изготовлении систем отопления или кондиционирования воздуха. С помощью УЗ-сварки их составные элементы удаётся более надёжно соединить друг с другом).

Установки ультразвуковой микросварки

Ультразвуковая сварка в микроэлектронике нашла широчайшее применение. В современном мире устройства, собранные по нанометровым техпроцессам, есть практически у каждого обывателя (например мобильный смартфон). Так, потребность в устройстве рабочего места специалиста-микросварщика становится очевидной, а необходимость в специализированном микросварочном оборудовании — все более насущной.

Разберем основные аппараты ультразвуковой микросварки.

  • Установка УМС-1АКпредназначена для автоматической и полуавтоматической ультразвуковой и термозвуковой сварки золотой проволоки методом «шарик-клин» и алюминиевой, золотой проволоки методом «клин-клин». Управление автоматической установкой производится с помощью специализированной системы управления на базе персонального компьютера, позволяющая производить программирование до 100 технологических параметров: высота, длина, угол наклона перемычки и т. д.Установка оснащена системой машинного зрения для распознавания образов контактных площадок полупроводниковых приборов. Установка комплектуется ультразвуковым генератором с возможностью автоматической подстройки резонансной частоты в процессе сварочного импульса, при этом используются ультразвуковые пьезокерамические преобразователи с резонансной частотой 62 кГц; 108 кГц.
  • Аппарат ультразвуковой микросварки УМС-1УТиспользуется для ультразвуковой сварки внахлест алюминиевой и золотой проволоки «клин-клин». Установка комплектуется дополнительным ручным механическим приводом для опускания сварочной головки по оси Z с помощью – «ручки» с целью точного позиционирования сварочного электрода относительно контактной площадки и для оперативной коррекции уровня сварки с разновысотностью до 6 мм и глубиной «колодца» до 18 мм (при длине электрода 21мм, 3 мм остаются на закрепления электрода в ультразвуковом преобразователе).
  • Установка УМС-2ШКпредназначена для автоматизированной термозвуковой сварки золотых проволочных выводов методом «шарик-клин», с дополнительным закреплением «клина» «шариком», с возможностью присоединения золотых шариков на контактные площадки (бампирование) и «внахлест» методом «клин-клин» Кроме того установка предназначена для автоматизированной ультразвуковой сварки алюминиевой проволоки и сварки ленты.
  • Установка УЗ сварки УМС-21Уиспользуется для ультразвуковой сварки алюминиевой проволоки диаметром от 100 мкм до 500 мкм внахлест методом «клин-клин». Установка изготавливается в двух вариантах: при сборке приборов проволокой диаметром от 100 до 350 мкм, отделение проволоки от второго сварного соединения происходит с помощью зажимных губок; при монтаже проволокой диаметром 400-500 мкм с обрезкой сварочной проволоки после второй сварки с помощью «ножа».
  • Установка сварки ультразвуком УМС-2ТКУ, предназначенная для точечного присоединения золотых проволочных выводов диаметром от 15 до 50 мкм к контактным площадкам без корпусных диодов методом термокомпрессионной и термозвуковой микросварки (для проволочного монтажа гибридных интегральных микросхем).

Советуем изучить — Программируемые реле времени

Оцените статью
Про пайку
Добавить комментарий