Основные вопросы сварки

Основные вопросы сварки Распайка
Содержание
  1. Аустенитно — ферритные нержавеющие стали
  2. Аустенитные коррозионностойкие стали
  3. Дефекты сварных соединений при неправильных расчетах
  4. Зависимость от типа сварочного шва
  5. Задачи на расчет сварных соединений
  6. Какие параметры используются в расчете
  7. Калькуляторы сварных швов
  8. Коэффициент прочности шва
  9. Низколегированные стали жаропрочные перлитные
  10. Низколегированные стали повышенной прочности
  11. Особенности сварки аппаратуры из разнородных сталей
  12. От чего зависит прочность сварочного стыка
  13. Расчет сварных соединений
  14. Расчеты прочности соединений
  15. Стали системы fe-c-cr (хромистые стали)
  16. Стыковые швы
  17. Таблицы несущей способности сварных угловых швов
  18. Таблицы несущей способности угловых швов
  19. Технологическая прочность оценивается образованием горячих и холодных трещин
  20. Угловые конструкции
  21. Физические способы контроля качества
  22. Хромистые мартенситно-ферритные стали

Аустенитно — ферритные нержавеющие стали

Относятся к группе хорошо свариваемых сталей. Они стойки к образованию горячих трещин против межкристаллитной коррозии.

Специфичным моментом свариваемости является их повышенная склонность к росту зерна. Наряду с ростом ферритных зерен возрастает общее количество феррита. Последующим быстрым охлаждением фиксируется образовавшаяся структура. Размеры зерна и количество феррита, а также ширина зоны перегрева зависят от погонной энергии сварки, соотношения структурных составляющих в исходном состоянии и чувствительности стали к перегреву.

Соотношение количества структурных составляющих (гамма — и альфа-фаз) в исходном состоянии в значительной степени зависит от содержания в стали Ti. Количество титана в стали также определяет устойчивость аустенитной фазы против гамма- и альфа-превращения при сварочном нагреве.

Чем выше содержание Ti, тем чувствительней сталь к перегреву. Вследствие роста зерна и уменьшения количества аустенита наблюдается снижение ударной вязкости металла околошовной зоны и угла загиба сварных соединений аустенитно- ферритных сталей. Менее чувствительными к сварочному нагреву являются стали, не содержащие титан, такие, как 03Х23Н6 и 03Х22Н6М2.

Читайте также:  Как перепаять штекер на колонках

Аустенитные коррозионностойкие стали

Содержат в своём составе Cr, Ni, C. По реакции на термический цикл хромоникелевые стали относят к хорошо свариваемым. При охлаждении они претерпевают однофазную аустенитную кристаллизацию неперлитного распада, тем более мартенситного превращения при этом не происходит.

Характерным показателем свариваемости хромоникелевых сталей является межкристаллитная коррозия (МКК).

МКК развивается в зоне термического влияния, нагретой до температур 500-800 °С (критический интервал температур).

При пребывании металла в опасном (критическом) интервале температур по границам зерен аустенита выпадают карбиды хрома Cr(4)C, что приводит к обеднению приграничных участков зерен аустенита хромом, который определяет коррозионную стойкость стали. В этих участках развивается коррозия, которая называется межкристаллитной и имеет опасные последствия – может вызвать хрупкие разрушения конструкций в процессе эксплуатации.

Чтобы добиться стойкости стали против межкристаллитной коррозии, нужно исключить или ослабить эффект выпадения карбидов. т. е. стабилизировать свойства стали.

Дефекты сварных соединений при неправильных расчетах

В случае со сварочными металлоконструкциями следует понимать, что эффективная и безопасная их работа и расчет угловых сварных швов, стыковых, тавровых или нахлесточных непосредственно взаимосвязаны между собой. Если проигнорировать или же неправильно выполнить исчисления, то существенно повышаются риски образования дефектов и неточностей в готовом изделии.

Чаще всего возникают следующие браки:

  • подрезы. Образуются по линии соединения или возле него канавки, приводящие к быстрому разрушению конструкции;
  • поры. Визуально они практически незаметны, возникают вследствие проникновения газов, образующихся в процессе плавления электрода и металла;
  • непровары. Участки, на которых недостаточно расплавился металл, в результате чего на варочном стыке возникли пробелы;
  • сторонние включения. Одна из наиболее опасных ошибок, вследствие которой значительно понижается прочность соединения и со временем в нем возникают трещины;
  • холодные и горячие трещины. Первые образуются после остывания конструкции из-за окисления в процессе плавления. Вторые возникают в процессе плавления металла при нарушении сварочной технологии, например, при неправильном выборе электродов.

Избежать всех этих дефектов можно если предварительно выполнить вычисления по существующим формулам. Это поможет создать качественные соединения, способные выдерживать критические нагрузки и усилия при эксплуатации конструкции.

Зависимость от типа сварочного шва

Существует несколько вариантов сцепления металлических элементов в единую конструкцию. По расположению соединяемых деталей различают следующие виды сварных швов:

  1. Стыковой – наиболее рациональный, т. к. концентрация напряжения в шве при таком методе минимальна. Свариваются торцы деталей, в результате одна часть изделия продолжает другую.
  2. Угловой – соединяемые элементы располагаются перпендикулярно друг другу. Прочность здесь во многом зависит от верно рассчитанного предельного усилия.
  3. Тавровый – похож на угловой с той лишь разницей, что детали свариваются торцами. Такая дорожка прочная, экономичная и простая в выполнении.
  4. Нахлесточный – края сцепляемых деталей несколько находят друг на друга. Такой тип позволяет укрепить соединение и применяется там, где нужно сварить металл толщиной не более 5 мм.

Для каждого из названных типов расчет производится по индивидуальной формуле.

Прежде чем начинать вычисление прочности будущего сцепления, нужно рассчитать площадь его поперечного сечения. Для этого длину сварного соединения умножают на его толщину.

Задачи на расчет сварных соединений

Тема: Расчет на прочность сварных соединений

Цель

: Научится рассчитывать сварные швы на прочность.

Пример 1.

Стержень, состоящий из двух равнополочных уголков, соединенных косынкой, нагружен постоянной растягивающей силойF= 200 кН (рисунок 3.15). Определить номер профиля уголков и длину швов сварной конструкции соединения.

Материал уголков — сталь Ст 3.

Решение.

1 Принимаем, что сварка осуществляется вручную электродами Э42.

2 Определяем допускаемое напряжение растяжения для основного металла, принимая для Ст 3 = 240 МПа (таблица А1) и = 1,25 (см. п. 3)

= 192 МПа

3 Определим допускаемое напряжение на срез для сварного шва, в соответствии с таблицей 3.11

‘] = 0,6 ·[σР] = 0,6 ·192 = 115,2 МПа.

4 Из расчета на растяжение определим площадь сечения уголков

= 1042 мм2.

Для одного уголка А =

521 мм2. По ГОСТ (таблица А5 ) выбираем уголок № 5,6 имеющий площадь поперечного сеченияА= 541 мм2, толщину полкиt=5 мм и координату центра тяжестих0= 15,7 мм.

5 Сварные швы располагают так, чтобы напряжения в них были одинаковыми. Поэтому при проектировании соединения уголков с косынками, т.е. при несимметричной конструкции, длину швов делают неодинаковой. Таким образом, каждый шов воспринимает только свою часть нагрузки F

—F1 иF2.

Длину фланговых швов определяют в предположении, что их длина пропорциональна этим частям силы F

—F1 иF2. Параллельные составляющиеF1 иF2 находят по формулам:

; F

1 F2 =F.

Решая эти уравнения, получим:

= 200 ·103 · (56 – 15,7) / 56 = 144·103H;

= 200 ·103 – 144·103 = 56 ·103H.

6 Определим длину швов (см. формулу 4.14 [1, с.128]), приняв катет шва k=t= 5 мм:

= 178 мм,

= 69 мм.

Округляя, принимаем l

1 = 180 мм,l2 = 40 мм, добавив для коротких швов по 5 мм против расчетной длины.

Пример2.Найти параметры сварных швов кривошипа (рисунок 3.16), нагруженного постоянной силойF= 5 кН и имеющего размерыd= 100 мм;l= 200 мм;а =300 мм;δmin=3 мм при условии, что прочность основного металла обеспечена.

Решение.

1 Дополнительно принято: основной металл — сталь Ст 4 (σТ=260 МПа); сварка ручная дуговая электродом Э42А; швы угловые с катетомk=δmin=3 мм (фрагмент А рисунок 3.16).

2 Определяем допускаемое напряжение растяжения для основного металла, принимая для стали Ст 4 = 260 МПа ( таблицу А1) и = 1,65 (см. п. 3)

= 157,6 МПа.

3 Допускаемое касательное напряжение сварного шва (см. таблицу 3.11),

[τ ‘] = 0,65 ·[σР

] = 0,65 ·157,6 = 102 МПа.

4 Расчету подлежит шов № 1, который по сравнению со швом № 2 дополнительно нагружен изгибающим моментом М.

Опасное сечение шва – сечение по биссектрисе прямого угла — представляет собой коническую поверхность, которую условно разворачивают на плоскость стыка свариваемых деталей. Выполняют приведение нагрузки (переносFв центр тяжести расчетного сечения) и составляют расчетную схему (рисунок 3.17), на которой:F— центральная сила;М— изгибающий момент,Т— крутящий момент:

М =Fּl=5000 ּ 200 = 1ּ 106 Нּмм;

Т =Fּa=5000 ּ 300 = 1,5 ּ 106 Нּмм

  1. В наиболее нагруженных зонах шва, удаленных от оси Х-Х

    на расстояние
    у,
    находят суммарное касательное напряжение и сравнивают с допускаемым, используя зависимость,

, (*)

где —

касательное напряжение при действии центральной сдвигающей силы;при наличии центрирующего пояска = 0;

— касательное напряжение при действии вращающего момента Т,

= 2·1,5·106 / (3,14·1002·0,7·3) =

= 45,1 МПа;

— касательное напряжение при действии изгибающего момента М,=

= 60,7 МПа.

Таким образом,

= 76,5 МПа < [τ ‘] = 102 МПа.

Статическая прочность угловых швов обеспечена.

6 Определим величину катета k

проектным расчетом, преобразуя зависимость (*):

= 2,23 мм.

Принято k

= 3 мм.

Заключительная часть: подведение итогов занятия, выставление оценок, домашнее задание,

Конец занятия

Какие параметры используются в расчете

В расчете на прочность сварных соединений необходим целый ряд показателей.

При этом учитывают следующие основные параметры:

  • Ry – сопротивление материала изделия с учетом предела текучести; это постоянная величина для каждого металла;
  • Ru – сопротивление материала в соответствии с временным сопротивлением; стандартный табличный показатель;
  • Rwy – сопротивление с учетом предела текучести;
  • N – предельно допустимая нагрузка, которую может выдержать сцепление;
  • t – минимальная толщина соединяемых деталей;
  • lw – максимальная длина сварного стыка, при вычислении ее уменьшают на 2t;
  • gс – коэффициент условий, которые преобладают на рабочем месте; стандартизированный параметр, присутствует в общепринятых таблицах, в частности, в методичках для сварщиков.

Процесс растяжения и сжатия металла вычисляют по формуле:

Если при изготовлении изделия свариваются детали из разных металлов, то в формулах используются Ry и Ru для материала с наименьшей прочностью. Аналогично поступают при включении параметров в расчете шва на срез.

Кроме названных числовых показателей на надежность соединения влияют:

  • качество материала изделия;
  • правильно подобранные расходные материалы (присадки, электроды);
  • режим сварки, в т. ч. полярность и сила тока;
  • тщательность обработки заготовок – на кромке стыков не должно быть никаких деформаций и посторонних вкраплений;
  • соответствие сварного аппарата требуемой технологии сварки и мощности.

Такие характеристики обязательно берутся во внимание, от каждой из них зависит точность расчета качества сцепления.

Калькуляторы сварных швов

Существуют специализированные калькуляторы, с помощью которых без особых навыков несложно провести расчет длины сварного шва, определить оптимальные параметры угловых, точечных и стыковых соединений.

Проверить по калькулятору можно все существующие типовые стыки с прилагаемыми к ним нагрузкам с разными силовыми усилиями. Исчисления помогут выбрать подходящий к конкретной конструкции размер и тип стыкового соединения, а также безошибочно подобрать материал для сваривания. Расчеты позволяют установить необходимые геометрические значения сварочного шва и провести его проверку на прочность.

Не рекомендовано к точечным соединениям, стыкам с разделкой кромок и к электрозаклепкам прилагать усталостную нагрузку, поскольку расчет таких швов не поддерживается и результаты будут неточными. Также при вычислениях не учитываются изменения механических характеристик металлов, возникающие вследствие воздействий остаточных напряжений и температурных режимов.

Коэффициент прочности шва

Это показатель φ, являющийся отношением между собой прочностей сварной дорожки и основного материала. Его значение нормировано и определяется способом сварки и конструкцией стыка. Он принимается на основании Правил Госгортехнадзора и отражается в приложениях ГОСТов Р52857.1-2007, 14249-89 и 34233.1-2021.

Таблица 1. Коэффициенты прочности сварочных швов

Тип сварного соединенияЗначение φ
Контролируемый участок от общей протяженности шва:
100%10-50 %
Стыковое одностороннее, выполненное ручной сваркой0,90,65
Тавровое, с конструктивно предусмотренным зазором между деталями0,80,65
Встык одностороннее, производимое с подкладкой из флюса или керамики, автоматической или полуавтоматической сваркой0,90,8
Втавр или встык со сплошным двусторонним проваром, выполняемый автоматикой или полуавтоматикой1,00,9
Стыковое с подвариванием корня шва или тавровый со сплошным проваром с 2 сторон, выполненные ручной сваркой1,00,9
Одностороннее встык, во время сварки имеет со стороны корня шва металлическую подкладку, прилегающую к основному материалу по всей длине шва0,90,8

Коэффициент прочности для дорожек, паянных мягкими и твердыми припоями с использованием аппаратов из цветных металлов, составляет 0,7 для композиционной пайки, 1 – для однородной.

Низколегированные стали жаропрочные перлитные

Хромомолибденовые стали 12МХ, 12ХМ, 15ХМ предназначены для работы в диапазоне температур -40… 560 °С. В основном используются при температурах 475… 560 °С. Их применение обусловлено низкой стоимостью и достаточно высокой технологичностью при изготовлении сварных конструкций и производстве отливок, поковок.

На участках, нагретых выше точки Ас(3), возможно образование мартенсита и троостита. Реакция стали на термический цикл сварки характеризуется разупрочнением в зоне термического влияния в интервале температуры Ас(3) — Т (0), который объясняется процессами отпуска. Протяжённость разупрочненного участка увеличивается при больших значениях погонной энергии сварки.

Мягкая разупрочненная прослойка может явиться причиной локальных разрушений сварных соединений в процессе эксплуатации, особенно при изгибающих нагрузках.

Устранение разупрочнения осуществляется последующей термической обработкой с фазовой перекристаллизацией в печах (объёмная термическая обработка).

Образование обезуглероженной (ферритной) прослойки – это специфический показатель свариваемости, присущий этим сталям. В процессе последующей эксплуатации при температурах 450-600 °С происходит миграция углерода из металла шва в основной металл, или наоборот, когда имеет место различие в их легировании карбидообразующими элементами.

Низколегированные стали повышенной прочности

К низколегированным относят стали, содержащие в своём составе до 2 % легирующих элементов каждого в отдельности и до 5 % суммарно (Mn, Si, Cr, Ni). Содержание углерода, как и у углеродистых сталей, не превышает 0,22 %. Содержание S и P в низколегированных сталях такое же, как в качественных.

При сварке кинетика распада аустенита такая же, как и углеродистых сталей. При охлаждении на воздухе получается феррито-перлитная структура. Поэтому низколегированные стали повышенной прочности относят к хорошо свариваемым.

Однако легирующие элементы существенно снижают критическую скорость охлаждения. При содержании в верхнем пределе и высоких скоростях охлаждения возможно подавление перлитного превращения и появления промежуточных и закалочных структур.

При уменьшении погонной энергии сварки и увеличении интенсивности охлаждения в металле шва и зоне термического влияния возрастает вероятность распада аустенита с образованием закалочных структур. При этом будет увеличиваться вероятность образования холодных трещин и склонность к хрупкому разрушению.

При повышенных погонных энергиях наблюдается рост зерна аустенита и образуется грубозернистая феррито-перлитная структура видманштеттового типа с пониженной ударной вязкостью.

Выбор тепловых режимов в основном преследует цель недопущения холодных трещин. Одним из самых технологичных средств, снижающих вероятность их появления, является подогрев, температура которого определяется в зависимости от эквивалента углерода и толщины свариваемого проката. Необходимая температура подогрева возрастает с увеличением легированности стали и толщины свариваемого проката.

Особенности сварки аппаратуры из разнородных сталей

Специфическими показателями свариваемости разнородных сталей являются процессы диффузии и разбавления.

Наибольшую опасность представляет диффузия С в сторону высоколегированной стали, где большая концентрация Cr или других карбидообразующих элементов.

Разбавление происходит при перемешивании свариваемых сталей и присадочного материала в объёме сварочной ванны.

Более легированная сталь разбавляется менее легированной. Степень разбавления зависит от доли участия каждого из составляющих разнородное сварное соединение.

Общие сведения о металлургических процессах при сварке в инертных газах.

Сварку сталей осуществляют обычно под флюсом, в среде оксида углерода (IV), но бывают случаи, когда целесообразно применять аргонно-дуговую сварку – например, для упрочнения средне- и высоколегированных сталей.

Низкоуглеродистые низколегированные стали, особенно кипящие, склонны к пористости вследствие окисления углерода:

Fe(3)C FeO = 4Fe CO;

Этот процесс идёт за счёт кислорода, накопленного в сталях во время их выплавки, но может возникать за счёт примеси к Ar марок В и Г, за счёт влажности газа и содержащегося в нём кислорода.

Для подавления этой реакции в сварочной ванне нужно иметь достаточное раскислителей (Si, Mn, Ti), т. е. использовать сварочные проволоки Св08ГС или Св08Г2С. Можно снизить пористость путём добавки к аргону до 50 % кислорода, который, вызывая интенсивное кипение сварочной ванны, способствует удалению газов до начала кристаллизации.

Среднелегированные углеродистые стали обычно содержат в своём составе достаточное количество активных легирующих компонентов для подавления пористости, вызываемой окислением углерода. Это обеспечивает плотную структуру шва, а состав шва соответствует основному металлу, если электродные проволоки имеют так же близкий состав.

Аустенитные коррозионностойкие и жаропрочные стали (12Х18Н10Т и др.) хорошо свариваются в среде аргона как плавящимся, так и неплавящимся электродом. При сварке этих сталей обычно не требуется каких-либо дополнительных мероприятий, но аустенитно- мартенситные стали очень чувствительны к влиянию водорода, который их сильно охрупчивает и даёт замедленное разрушение в виде холодных трещин.

От чего зависит прочность сварочного стыка

Чтобы правильно вычислить прочность сварного шва, необходимо знать какие факторы влияют на прочностные характеристики. Главное условие для создания прочных соединений — соблюдение сварочной технологии.

Но есть также ряд других факторов, от которых зависит насколько качественным будут стыки:

  • качество используемых материалов. Коэффициент прочности сварного шва напрямую зависит от того, насколько правильно подобран окружающий металл и какими характеристиками он обладает;
  • расходные материалы. Неверно подобранные присадки или электроды не способны сформировать надежное соединение;
  • сварочное оборудование должно отвечать требуемой мощности и технологии сварки;
  • надежность и качество провара зависит от режима сварки, в частности от силы тока и полярности;
  • качество заготовок. На кромочных стыках не должно быть никаких изъянов и вкраплений, поскольку это нарушает форму и прочность шва.

Каждый из этих параметров должен учитываться при планировании сварочных работ и от каждого из них зависит насколько точно будет произведен расчет на прочность сварных соединений.

Расчет сварных соединений

Расчет стыковых соединений.

Швы этих соединений работают на растяжение или сжатие в зависи­мости от направления действующей нагрузки (рис.11, а и б). Основ­ным критерием работоспособности стыковых швов является их прочность. Соединение разрушается в зоне термического влияния и рассчитывается по размерам сечения детали по напряжениям, возникающим в материале детали.

Рис. 11. К расчету стыковых соединений

Проверочный расчет прочности шва на растяжение.

Условие прочности:

, (1)

где , — расчетное и допускаемое напряжения на растяжение для шва (табл.1); F — нагрузка, действующая на шов; δ — толщина детали (толщину шва принимают равной толщине детали); lш — длина шва.

Проектировочный расчет. Целью этого расчета является определение длины шва.

Исходя из основного условия прочности (1), длину стыкового шва при действии растягивающей силы определяют по формуле:

(2)

Таблица 1. Допускаемые напряжения для сварных соединений деталей из низко- и среднеуглеродистых сталей при статической нагрузке

Вид деформации, напряжениеАвтоматическая и полуавтоматиче­ская сварка под флюсомРучная дуговая электродами
Э50А, Э42АЭ50, Э42
Растяжение0,9[σ]р
Сжатие
Срез

Расчет угловых швов нахлесточных соединений.

При действии осевой растягивающей (или сжимающей) силы считают, что срез угловых швов происходит по сечению I-I (рис. 12), проходя­щему через биссектрису прямого угла.

Рис. 12. К расчету соединения внахлестку. Лобовой шов

Опасным напряжением считают касательное напряжение и расчет ве­дут на срез (напряжениями изгиба пренебрегают). Для нормальных угловых швов длина биссектрисы

, (3)

где h — длина биссектрисы (высота шва в опасном сечении); К — катет шва (принимается не менее 3 мм).

Проверочный расчет. Условие прочности одностороннего лобового шва на срез:

, (4)

где , — расчетное и допускаемое напряжения среза для шва (см. табл.1); lш — длина шва; F — нагрузка, действующая на шов.

Проектировочный расчет. Длину одностороннего лобового углового шва (см. рис. 12) при осевом нагружении определяют по формуле

; (5)

длина двустороннего лобового углового шва

. (6)

Фланговые угловые швы (см. рис.5, б) рассчитывают по уравнению (6), т. е. аналогично рассмотренному случаю расчета двустороннего ло­бового шва. Во фланговых швах нагрузка по длине шва распределяется не­равномерно (по концам шва увеличивается), поэтому длину фланговых швов стараются ограничить lш < (50 ÷ 60)К.

Расчет точечных сварных соединений.

Для сваривания тонкостенных листовых конструкций часто используются точечные сварные соединения. Такие соединения проверяют на срез. Условие прочности имеет вид

где d – диаметр сварных точек;

z – число сварных точек.

Расчет тавровых швов.

Рассмотрим наиболее характерные случаи нагружения тавровых швов, которые могут встречаться также и в комбинациях.

Рис. 13

а) нагрузка моментом в плоскости шва

Если привариваемая деталь круглая (рис.13, а) (шов круг­лый кольцевой), то расчет шва проводится на кручение в коль­цевом сечении, расположенном под углом 45° к основанию шва.

где — полярный момент инерции расчетного сечения;

R — расстояние до наиболее удаленного от центра волокна, сечения шва.

Если сечение шва не круглое (рис.13, б), то оно всё же условно рассчитывается по уравнение кручения для круглых стержней. В этом случае принято пренебрегать возникающим при такой расчетной схеме короблением сечения и нелинейный характером эпюр напряжений:

где — условный полярный момент инерции сечения;

— допускаемое напряжение кручения для наплавлен­ного металла шва.

Для указанного на рис. 7, б примера:

; .

б) внецентренно приложенная нагрузка или нагрузка моментом

Рис. 14

Нагрузка состоит из изгибающего момента M = M0 или M = Pl и перерезывающей силы Р (при нагрузке только моментом M0 перерезывающая сила отсутствует).

Шов рассчитывается на изгиб и срез, но не по нормальным, а по касательным напряжениям в наклонных сечениях под углом 45° к основанию шва. Полное касательное напряжение равно векторной сумме напряжений от момента и перерезывающей силы

; .

В данном примере

; .

В любом случае для расчёта самых сложных сварных швов сначала необходимо привести силу и момент к шву и распределить их пропорционально несущей способности (длине) всех простых участков. Таким образом, любой сложный шов сводится к сумме простейших расчётных схем.

Последовательность проектировочного расчета сварных соеди­нений.

1. Выбирают конструкцию шва (стыковой, угловой), вид сварки и мар­ку электродов.

2. Определяют допускаемые напряжения для сварного соединения (см. табл.1).

3. По формулам (2), (5), (6) определяют длину шва.

4. При соединении комбинированными швами определяют длину лобовых и фланговых швов.

5. Вычерчивают сварное соединение и уточняют размеры соединяемых деталей.

Рекомендации по конструированию сварных соединений встык и внахлест

Из-за дефектов сварки на концах шва принимают минимальную длину шва не менее 30 мм.

В соединениях внахлест (рис.5, а) длину перекрытия принимают больше 4s, где s – минимальная толщина свариваемых деталей. Длина лобовых швов lшне ограничивается. Длина фланговых швов ограничивается, так как с увеличением их длины возрастает неравномерность распределения напряжений по длине шва (рис.5, б) lфл < 60K

Рис.15

Сварные швы располагают так, чтобы они в соединении были нагружены равномерно. При проектировании соединения уголков с косынками (рис.15) длины фланговых швов принимают обратно пропорциональными расстояниям до центра тяжести уголка:

, (7)

Суммарная длина фланговых швов

, (8)

Следовательно, длина флангового шва у примыкающей полки уголка

. (9)

В конструкциях, подверженных действию вибрационных знакопеременных нагрузок, соединения внахлест не рекомендуются, так как они создают значительную концентрацию напряжений.

Расчеты прочности соединений

Для угловых и стыковых соединений есть свои параметры, определяющие их качество и прочность.

В стыковых сварных швах — это номинальное сечение проваренной зоны без наплывов расплавленного металла.

Основные прочностные параметры углового соединения определяет катет.Универсальный шаблон сварщика

Лучшим способом проверить в домашней мастерской качество наложенного углового сварного шва будет использование универсального шаблона сварщика.

Номинальное сечение вычисляют в зависимости от нагрузок, которые будет испытывать соединение во время эксплуатации. Расчет сварного шва на прочность проводят по соответствующим формулам.

Насколько качественный шов в домашних условиях можно определить и внешним осмотром. Например, если соединение по форме слишком плоское и расплывчатое, это может означать о плохой проварке металла. Большие выпуклости означают, что во время сваривания шов попросту «всплыл» на поверхность и не соединил детали.

Таким же образом можно понять, насколько качественным сделано угловое соединение. Плоские и широкие катеты (стороны треугольника) означают непровар тела деталей. Выпуклые швы говорят о всплытии шва на поверхность.

Расчеты сварного шва на угловых стыках можно сделать с помощью формулы Т=S×cos45°. Косинус 45 равняется значению 0,7. А S — это ширина шва. Умножив эти данные, получаем значение катета углового соединения.

Проводя расчет сварных соединений в домашней мастерской, можно исходить из значения, что катет и номинальное сечение не должны превышать толщину свариваемых деталей более чем на 1-1,5 миллиметра. Если шов получился большим или меньшим, то такое крепление может быть недостаточно качественным. Но такой способ можно применять, если изготавливаются неответственные конструкции.

А что вы можете добавить к материалу этой статьи? Если у Вас есть опыт в проверке и расчетах сварных швов, то поделитесь им в блоке комментариев.

Стали системы fe-c-cr (хромистые стали)

Хром — основной легирующий элемент. Он придаёт сталям ценные свойства: жаропрочность, жаростойкость (калиностойкость, коррозионную стойкость). Чем больше содержание хрома, тем более высокой коррозионной стойкостью обладает сталь. Такое влияние хрома объясняется его способностью к самопассивированию даже в естественных условиях и образованию плотных газонепроницаемых оксидных плёнок при высоких температурах.

1. Специфика свариваемости сталей типа 15Х5М

Склонность к закалке осложняет технологический процесс выполнения сварочных работ. В зоне термического влияния образуются твёрдые прослойки, которые не устраняются даже при сварке с подогревом до 350-400 °С. Для полного их устранения необходимо применение дополнительных мер.

Небольшая скорость распада хромистого аустенита, вызывающая склонность к закалке на воздухе, и фазовые превращения мартенситного характера снижают стойкость сталей к образованию трещин. Применение закаливающих на воздухе сталей для изготовления сварного оборудования приводит к образованию в соединениях механической неоднородности.

Заключается она в различии свойств характерных зон сварного соединения, является следствием, с одной стороны, неоднородности термодеформационных полей при сварке структурно-неравновесных сталей, с другой – применения технологии сварки с отличающимися по свойствам сварочными материалами из-за необходимости обеспечения технологической прочности.

Стыковые швы

Если необходимо высчитать коэффициент прочности сварного шва, в первую очередь, нужно обратить внимание на такой параметр как номинальное сечение, при этом учитывать утолщения швов, образуемых во время сварки не нужно. Вычисление производится исходя из данных о сопротивлении материалов, которые образуются в сплошных балках.

Когда касательные, нормальные напряжения начнут оказывать непосредственное влияние на соединения, то для расчета эквивалентного напряжения следует воспользоваться формулой:

Условие прочности можно представить следующим образом: σЭ ≤ [σ’]P

Для поиска данных этого параметра ниже представлена таблица.

Метод сварки Допускаемые напряжения
При растяжении [σ’]рПри сжатии [σ’]ежПри сдвиге
[τ’]ср
Автоматическая, ручная электродами Э42А и Э50А [σ]р[σ]р0,65 [σ]р
Ручная электродами обычного качества0,9 [σ]р[σ]р 0,6 [σ]р
Контактная точечная 0,5 [σ]р

Таблицы несущей способности сварных угловых швов

Таблицы несущей способности сварных швов составлены на основании НиТУ 121-55 при расчете конструкции по предельному состоянию. Расчетные сопротивления швов приняты как произведение нормативных сопротивлений на соответствующие коэфициенты однородности (с округлениями) в соответствии с табл. 12 (13) НиТУ 121-55.

Таблицы составлены для угловых (виликовых) швов (лобовых, фланговых и втавр) работающих на напряженное состояние сжатия растяжения и среза.

Таблицы составлены на 6 случаев сочетания марок стали со сваркой определенными электродами в соответствии с табл. 12 (13) НиТУ 121-55 (с учетом изменений в НиТУ 121-55 по приказу Госстроя СССР от 12 апреля 1961г.). В таблицах сварные швы расчитаны по формуле на сжатие растяжение и срез кгловых швов:

N — несущая способность шва

m — коэф. условий работы конструкции = 1

Rу св — расчетное сопротивление узлового шва

Lш — расчетная длина шва

hш — толщина углового шва (по катету)

Таблицы несущей способности угловых швов

Технические данные Основные вопросы сварки

Таблицы несущей способности сварных швов составлены на основании НиТУ 121-55 при расчете конструкций по предельному состоянию. Расчетные сопротивления швов приняты как произведения нормативных сопротивлений на соответствующие коэфициенты однородности (с округлениями ) в соответствии с табл. 12 (13) НИТУ 121-55

Таблицы составлены для угловых (валиковых) швов (лобовых, фланговых и втавр) Работающих на напряженное состояние сжатия растяжение и среза.

Таблицы составлены на 6 случаев сочетания марок стали со сваркой определенными электродами в соответствии с табл. 12(13) НИТУ 121-55

Сварные швы рассчитаны по формуле на сжатие, растяжение и срез угловых швов.

Таблица №1

Несущая способность сварных швов при сварке электродами типа Э34 В конструкциях из стали марок СТ.0; СТ.2; Ст.3; СТ.4;

Таблица №2

Несущая способность сварных швов при сварке электродами типа Э42 и автоматическая сварка под слоем флюса в конструкциях из стали марок СТ.0;

Несущая способность сварных швов при сварке электродами типа Э42 , Э42А и автоматическая сварка под слоем флюса в конструкциях из стали марок СТ.2;

Несущая способность сварных швов при сварке электродами типа Э42 , Э42А и автоматическая сварка под слоем флюса в конструкциях из стали марок СТ.3; СТ.4;

Несущая способность сварных швов при сварке электродами типа Э50А , Э55А и автоматическая сварка под слоем флюса в конструкциях из стали марок НЛ1

Несущая способность сварных швов при сварке электродами типа Э50А , Э55А и автоматическая сварка под слоем флюса в конструкциях из стали марок НЛ2

Источник

Технологическая прочность оценивается образованием горячих и холодных трещин

1. Горячие трещины

Это хрупкие межкристаллические разрушения металла шва и зоны термического влияния. Возникают в твёрдо-жидком состоянии на завершающей стадии первичной кристаллизации, а также в твёрдом состоянии при высоких температурах на этапе преимущественного развития межзернистой деформации.

Наличие температурно-временного интервала хрупкости является первой причиной образования горячих трещин. Температурно-временной интервал обуславливается образованием жидких и полужидких прослоек, нарушающих металлическую сплошность сварного шва. Эти прослойки образуются при наличии легкоплавких, сернистых соединений (сульфидов)

Вторая причина образования горячих трещин – высокотемпературные деформации. Они развиваются вследствие затруднённой усадки металла шва, формоизменения свариваемых заготовок, а также при релаксации сварочных напряжений в неравновесных условиях сварки и при послесварочной термообработке, структурной и механической концентрации деформации.

2. Холодные трещины

Холодными считают такие трещины, которые образуются в процессе охлаждения после сварки при температуре 150 °С или в течение нескольких последующих суток. Имеют блестящий кристаллический излом без следов высокотемпературного окисления.

Основные факторы, обуславливающие их появление:

а) Образование структур закалки (мартенсита и бейнита) приводит к появлению дополнительных напряжений, обусловленных объёмным эффектом.

б) Воздействие сварочных растягивающих напряжений.

в) Концентрация диффузионного водорода. Водород легко перемещается в незакалённых структурах. В мартенсите диффузионная способность водорода снижается: он скапливается в микропустотах мартенсита, переходит в молекулярную форму и постепенно развивает высокое давление, способствующее образованию холодных трещин. кроме того, водород, адсорбированный на поверхности металла и в микропустотах, вызывает охрупчивание металла.

Углеродистые стали: сварка и сопутствующие ей процессы.

Сплавы Fe и С, где процентное содержание углерода не превышает 2,14 %, называют углеродистыми сталями. Углерод оказывает сильное влияние на свойства сталей.

Наличие других элементов обусловлено:

1. Технологическими особенностями производства — Mn, Si — для устранения вредных включений закиси железа, FeO и FeS. Вокруг оторочки сернистого железа, начиная с 985 °С, происходит оплавление, что ведёт к снижению технологической прочности сварного шва. Температура плавления MnS составляет 1620 °С, кроме того, он пластичен.

2. Невозможностью полного удаления из металла (S, P, N, H).

3. Случайными причинами (Cr, Ni, Cu и другие редкоземельные металлы) Углеродистые стали составляют основную массу сплава Fe-C, до 95 % аппаратуры и оборудования изготавливают именно из них.

В отечественной промышленности наиболее широко применяют стали с содержанием углерода до 0,22 %, редко от 0,22 до 0,3 %.

Структурно-фазовые превращения углеродистых сталей определяются диаграммой состояния Fe-C. В нормализованном состоянии имеют феррито-перлитную структуру. С точки зрения кинетики распада аустенита, у углеродистых сталей происходит превращение аустенита в перлит (второе основное превращение).

В зависимости от температуры, степени, скорости охлаждения феррито-цементитной смеси получается различной степени дисперсионный перлит, сорбит, бейнит, троостит.

Угловые конструкции

Такие соединения рассчитываются на основании их поперечного сечения, причем наименьшего, т. е. в наиболее опасном месте дорожки. Показатель устойчивости простого углового шва на изгиб, когда он нагружен лишь моментом M, вычисляется так:

  • Wc – момент сопротивления опасного сечения дорожки (шва);
  • M – изгибающий момент.

А напряжение простого углового соединения на срез запишется таким образом:

  • M – нагружающий момент на срез;
  • Fc = 0,7kl – площадь сечения дорожки в опасном месте, мм²;
  • P – допустимая нагрузка на дорожку.

При расчете угловых сварных швов на срез применяется общепринятое выражение:

  • N – максимальная нагрузка, давящая на линию сцепления;
  • с – коэффициент условий рабочей среды, значение указано в стандартизированных таблицах;
  • ßf, ßz – постоянные величины, не зависящие от марки металла, ßz = 1, ßf = 0,7;
  • Rwf – сопротивление срезу, табличная величина для разных материалов;
  • Rwz – сопротивление на линии стыка; стандартные, постоянные табличные величины;
  • kf – толщина дорожки, измеряется по линии сплавления;
  • Ywf – для стыка материала с сопротивлением 4200 кгс/см² составляет 0,85;
  • Ywz – 0,85 для всех марок стали;
  • lw – общая длина стыка, уменьшенная на 10 мм.

В определении длины сварочного сцепления на отрыв обязательно учитывают силу, направленную к центру тяжести. При этом площадь сечения выбирают в самом опасном месте дорожки, т. е. наименьшую.

Физические способы контроля качества

При проверке на качество сварные соединения проверяют с использованием различных физических методов.

Электромагнитный способ с использованием такого явления, как магнитное рассеивание. При этом поверхность должна быть покрыта порошком из железа или окалины, которые реагируют на магнитные поля. В случае наличия дефектов образуются скопления из опилок.Физический способ контроля сварки

Радиационный и ультразвуковой способы. Этот метод также используют на производстве для обнаружения полостей в теле шва. Без специального оборудования провести такую проверку невозможно. Радиационный способ подразумевает использование рентгеновского излучения, а ультразвуковой связан с прохождением и отражением звуковых волн.

Если есть дефекты, то, при прохождении рентгеновского излучения через деталь, на пленке они будут более затемненными.

Физические способы проверки помогают выявить нарушения в структуре шва и найти местонахождение различных полостей и раковин.

Хромистые мартенситно-ферритные стали

У стали марки 08Х13 с содержанием углерода 0,08 %, термокинетическая диаграмма распада аустенита имеет две области превышения: в интервале 600-930 °С, соответствующем образованию феррито-карбидной структуры, и 120-420 °С — мартенситной. Количество превращённого аустенита в каждом из указанных температурных интервалов зависит, главным образом, от скорости охлаждения.

Например, при охлаждении со средней скоростью 0,025 °С/с превращение аустенита происходит преимущественно в верхней области с образованием феррита и карбидов. Лишь 10 % аустенита в этом случае превращается в мартенсит в процессе охлаждения от 420 °С.

Повышение скорости охлаждения стали до 10 °C/c способствует переохлаждению аустенита до температуры начала мартенситного превращения (420 °С) и полному его бездиффузионному превращению. Изменения в структуре, обусловленные увеличением скорости охлаждения, сказываются и на механических свойствах сварных соединений. С возрастанием доли мартенсита наблюдается снижение ударной вязкости.

Увеличение содержания углерода приводит к сдвигу в область более низких температур границы превращения мартенсита. У сталей с содержанием углерода 0,1- 0,25 % в результате этого полное мартенситное превращение имеет место после охлаждения со скоростью ~1 °С/c.

С точки зрения свариваемости, мартенситно-ферритные стали являются “неудобными” в связи с высокой склонностью к подкалке в их сварных соединениях. Подкалка приводит к образованию холодных трещин, склонность к образованию которых зависит от характера распада аустенита в процессе охлаждения.

В случае формирования мартенситной структуры ударная вязкость сварных соединений 13 %-ных хромистых сталей снижается до 0,05-0,1 МДж/м. Последующий отпуск при 650-700 °С приводит к распаду структуры закалки, выделению карбидов, в результате чего тетрагональность мартенсита уменьшается.

После отпуска ударная вязкость возрастает до 1 МДж/м2. С учётом такой возможности восстановления ударной вязкости большинство марок хромистых сталей имеет повышенное содержание углерода для предотвращения образования значительного количества феррита в структуре.

Таким образом удаётся предотвратить охрупчивание стали. Однако при этом наблюдается ухудшение свариваемости вследствие склонности сварных соединений к холодным трещинам из-за высокой хрупкости околошовного металла со структурой пластинчатого мартенсита.

Оцените статью
Про пайку
Добавить комментарий