Гранулированный припой

Гранулированный припой Инструменты

Паять или не паять? Ну конечно же паять! А если вы не умеете, то эта статья именно для вас – в ней мы рассмотрим основные моменты при пайке, с которыми придется столкнуться новичкам. Поехали!

Пайка

Просмотры

Продолжение руководства по материалам электротехники. В этой части заканчиваем разбирать проводники: Углерод, Нихромы, термостабильные сплавы, припои — олово, прозрачные проводники.

image

Добро пожаловать под кат (ТРАФИК)

Эта часть посвящена «так себе проводникам» — материалам которые проводят ток, но делают это весьма паршиво, и с этим мирятся только благодаря каким-то особым свойствам материала, которого нет у других проводников.

Основное оборудование для пайки

Перед тем как приступить к пайке, необходимо определиться с тем, есть ли у вас все необходимое. Для пайки вам понадобятся в первую очередь основные инструменты и аксессуары – без них просто никак:

  • Паяльник
  • Припой
  • Флюс
  • Лента для выпайки

Рассмотрим более подробно, на что необходимо обратить внимание при выборе паяльника, припоя, флюса и ленты для выпайки.

Паяльник

Ассортимент паяльников на современном рынке просто впечатляет! Если информацию о качестве и надежности паяльника можно получить из отзывов, то об основном критерии выбора – мощности паяльника – мы вам расскажем тут. Зависимо от сферы применения все паяльники можно разделить на такие группы:

  • 30-40 Вт – паяльник для радиодеталей;
  • 60-70 Вт – универсальный паяльник;
  • 80-100 Вт – паяльник для массивных деталей и толстых проводов.

При выборе паяльника 60-70 Вт учитывайте один момент – лучше взять паяльник с регулировкой температуры, например Goot PX-201.

Goot PX-201

У вас будет мощный паяльник, который будет хорошо справляться с бессвинцовыми припоями, пайкой проводов и обычной пайкой. А благодаря регулировке температуры вы сможете минимизировать вероятность перегревания радиоэлектронных компонентов при пайке на платах.

Припой

С припоями все немного проще. Условно их можно разделить на 2 группы:

  • свинцовые припои;
  • бессвинцовые припои.

Бессвинцовые припои обеспечивают более прочное соединение в сравнении с обычными свинцовыми. Хотя на практике этого практически не заметно. А вот паять новичкам бессвинцовыми будет сложнее, поскольку у них выше температура плавления, они плохо растекаются и требуют использования дорогих флюсов.

Поэтому идеальным решением будет использование традиционных оловянно-свинцовых припоев. В зависимости от типа пайки они имеют разное соотношение свинца и олова.

Но как показывает практика, наиболее распространено использование припоя ПОС-60 и его аналогов. Температура плавления этого припоя составляет 183-188 °C, что дает возможность паять паяльниками любой мощности. При помощи него вы сможете выполнять практически все паяльные работы.

Также рекомендуем иметь в запасе немного сплава Розе. Это легкоплавкий припой с температурой плавления 90-100 °C. Он очень полезен при проведении демонтажа радиоэлектронных компонентов, которые чувствительны к перегреву, а также им хорошо лудить контакты на платах.

Сплав Розе

Флюсы

Для хорошей качественной пайки необходимо использовать флюс. В состав большинства современных припоев флюс уже входит. Но для снятия оксидной пленки с поверхностей, которые вы будете паять, их нужно дополнительно покрыть флюсом. Это обеспечит равномерное растекание припоя и улучшит процесс лужения.

Условно все флюсы можно разделить на 3 типа:

  • Нейтральные флюсы
  • Среднеактивные флюсы
  • Активные флюсы

Нейтральные флюсы удобны в пользовании и в большинстве не требуют смывания. Идеально подходят для обычной пайки, а также для пайки SMD  и BGA-компонентов. Продаются в жидком виде или в виде пасты.

Флюс

Среднеактивные имеют широкое применение как при пайке окисленных поверхностей, так и при обычной пайке и пайке электронных компонентов. Большинство также не требует смывания, поскольку активные свойства проявляются только при определенной температуре, например 150 °C, и при остывании до комнатной температуры утрачиваются. В отличие от нейтральных флюсов, они обеспечивают стойкую к коррозии пайку.

Флюс

Активные флюсы имеют практическое применение при пайке металлов, которые трудно лудятся обычными флюсами. К таким металлам относят:

  • обычную и нержавеющую сталь;
  • алюминий;
  • металлы с никелевым покрытием.

Самый известный представитель активных флюсов – это ортофосфорная кислота. Активные флюсы значительно упрощают процесс пайки, но они имеют резкий запах и токсичны. Поэтому обязательно необходимо паять в хорошо проветриваемых помещениях и не забывать смывать остатки флюса после пайки.

Флюс

Также не следует забывать про канифоль. Ее главное преимущество в том, что она не требует смывания, поскольку является чудесным диэлектриком. В чистом виде ее почти не используют, но на ее основе изготавливают практически все флюсы. Такой флюс вы можете приготовить самостоятельно. Для этого вам понадобится:

  • чистая канифоль(не активированная);
  • этиловый спирт.

Канифоль необходимо измельчить до порошкообразного состояния и развести с этиловым спиртом в соотношении 2:3.

В отличие от пайки обычной канифолью, этот раствор можно наносить непосредственно на место пайки. И главное – остатки не нужно смывать.

Очистка

После всего прочитанного у вас наверное возникает вопрос — как смывать флюс и чем его смывать? Все зависит от того, что вы паяете. Если это
пайка на плате, то для очистки от флюса можно использовать как обычный спирт, так и специальные омыватели для плат.

Просто нанесите их на место пайки, с помощью небольшой щетки (можно использовать старую зубную щетку) очистите остатки флюса и после этого их смойте. Для очистки остатков активного флюса при пайке проводов или
грубой пайке листовых металлов, хорошо подойдут различного рода растворители для краски или ацетон.

Оплетка для выпайки

Лента для снятия припоя особенно будет полезной новичкам, поскольку вначале сложно угадать с количеством необходимого припоя. А благодаря ленте для выпайки можно легко убрать остатки. Она состоит из мелких медных проводов, покрытых флюсом, которые сплетены между собой в ленту разной ширины (0.8 мм, 1.5 мм, 2.5 мм).

Ленты

Для удаления остатков припоя необходимо поместить кончик ленты в зону пайки и сверху прижать разогретым паяльником. Остатки припоя втянутся в ленту, а использованный кусок ленты нужно обрезать. Все очень просто!

Снятие припоя

Реклама

Читать далее:

Cортамент припоев, выпускаемых промышленностью

ROL1 и ORL1

Встречаются довольно редко — например, теоретически есть «Изагри» ФРК 525-2-Т4 с активированной канифолью с добавлением галогенов, но практически в руках его держать не доводилось.

Впрочем, производители второго эшелона довольно часто указывают в качестве флюса «activated rosin» — что это значит и к какому классу относится, ROL1 или уже ROM, остаётся только гадать (а также не брать эти припои ни для чего, кроме ёлочных гирлянд и одноразовых поделок в радиокружке).

Пайка радиокомпонентов на плату

Как паять провода вы уже знаете, поэтому переходим к более сложному – пайке радиокомпонентов на платах. Кто-то сталкивался с этим давно в школе на радиокружках, для кого-то это будет новый опыт. Рассмотрим (а некоторым напомним) нюансы пайки разного типа радиокомпонентов.

Пайка резисторов, конденсаторов и диодов с выводами

Технология пайки и выпайки такого типа радиокомпонентов не сложна, но требует слаженной работы паяльником с использованием вспомогательного ручного инструмента. Радиокомпоненты такого типа как правило имеют только два вывода, поэтому при выпайке необходимо по очереди прогревать паяльником припой на каждом из выводов и понемногу вытягивать компонент из посадочного места.

Пайка радиокомпонентов на плату

После того как компонент выпаян необходимо освободить отверстия на плате от остатков припоя. Это можно сделать при помощи паяльника и тонкого острого инструмента, например, при помощи обычной зубочистки.

Пайка нового элемента на плату происходит следующим образом:

  1. Наносим флюс на отверстия на плате.
  2. Вставляем выводы нового компонента в отверстия и пропаиваем их паяльником.
  3. Если выводы (ножки) компонента слишком длинные и сильно выступают из платы, обрезаем их кусачками.
  4. Смываем при необходимости остатки флюса.

Пайка SMD-компонентов

Пайка SMD-компонентов выполняется поверхностным монтажом на контакты на плате. На сегодня 90% пайки радиокомпонентов происходит именно таким образом. Как правило, для выпайки нерабочих радиокомпонентов используются специальные жала для SMD, но фактически такое жало можно изготовить самостоятельно. Для этого вам понадобится медный провод диаметром 1 мм. Его необходимо намотать несколько раз вокруг обычного жала паяльника как показано на фото.

Пайка SMD-компонентов

Процесс пайки SMD-компонентов следующий:

  1. Наносим флюс на контакты SMD-компонента.
  2. Контакты прогреваем изготовленным жалом и пинцетом снимаем нерабочий элемент.
  3. Устанавливаем новый SMD-компонент.
  4. Придерживаем его пинцетом и припаиваем по очереди каждый контакт обычным жалом. Или же это все можно сделать за один раз нашим самодельным жалом для SMD-компонентов.
  5. Смываем остатки флюса при необходимости.

Ну что же, поздравляем! В первую очередь с тем, что вы дочитали эту статью до конца 😉 Также мы очень надеемся, что смогли помочь вам получить и освоить основные навыки пайки. Как мы говорили в начале статьи, пайка – это постоянная практика. Поэтому практикуйтесь, практикуйтесь и еще раз практикуйтесь! Главная цель этой статьи – сопроводить вас в увлекательный мир пайки и дать основу, а остальную информацию вы можете легко найти по запросу к «О, великому Гуглу» или в наших статьях и видео. Также будем рады проконсультировать вас по любым вопросам по подбору паяльного оборудования – вот контакты нашей технической поддержки.

И помните самое главное – канифоли много не бывает! 🙂

Нравятся наши статьи? Тогда вы точно зацените видео на эту тему!

https://youtube.com/watch?v=playlist%3Flist%3DPLaDpHYMx6ikCtnDmA699fgoucKHsAF07v

Копирование материалов с сайта masteram.com.ua разрешается только при условии указания авторства и размещения обратной текстовой ссылки на каждый скопированный контент.

ROH1

Агрессивные флюсы для лужения кастрюль пайки сильно окисленных поверхностей. Высокое содержание галогенов, тщательная отмывка после пайки крайне желательна или строго обязательна (зависит от конкретного флюса) — иначе будет и коррозия, и пониженное до единиц мегаом сопротивление между соседними ножками компонентов, и все прочие прелести жизни.

Исходя из этого — если говорить прямо, применение ROH1 обосновано довольно редко. При этом ROH1 — чуть ли не на втором месте по распространённости в розничной продаже после дешёвых канифольных ROL0. Например, Asahi CF-10 составляет большую часть ассортимента Чип-и-Дипа по этой марке. Да и сегодняшняя беседа со связистами началась со ссылки на CF-10 на Алиэкспресс. Причиной тому цена или впечатление «да он вообще всё паяет» у начинающих радиогубителей — сходу сказать трудно.

С тем же CF-10 делает припои и «Изагри», и многочисленные китайцы.

Спасает CF-10 в основном довольно низкая коррозионная активность флюса после пайки: у него твёрдые негигроскопичные остатки, не склонные вступать в химические реакции с окружением. Тем не менее, если вы паяли CF-10 печатную плату, лучше будет протереть места пайки растворителем или помыть всю плату в УЗ-ванночке.

Помимо CF-10, Asahi делает ещё и водосмываемый ROH1 флюс C6. И казалось бы, виден его очевидный плюс — собственно заключающийся в отсутствии необходимости использовать для смывания изопропиловый спирт или иные специальные растворители. Однако, если с CF-10 производитель настаивает на том, что даже его остатки удалять не всегда обязательно, то вот C6 гигроскопичен и электропроводящ, поэтому тщательное удаление его остатков категорически необходимо — включая механическое, если это требуется. В качестве его достоинства указывается, что это допустимо сделать «в течение нескольких часов после завершения монтажа», а не немедленно.

Олово

Sn — Олово. Основной компонент мягких припоев. Олово — относительно легкоплавкий металл, что позволяет использовать его для соединения проводников. В чистом виде не используется (см. факты). Из-за дороговизны олова (а также других причин, см. ниже), его в припоях разбавляют свинцом. Припой из 61% олова и 39% свинца образует эвтектику, такой смесью, ПОС-61 (Припой Оловянно-Свинцовый — 61% олова) паяют радиодетали на платах, провода. В менее ответственных узлах (шасси, теплоотводы, экраны и т.п.) олово в припоях разбавляют сильнее, до 30% олова, 70% свинца.

Электронные устройства долгое время паяли оловянно-свинцовыми припоями. Затем набежали экологи и заявили, что свинец — металл тяжелый, токсичный, и проблемы бы не было, если бы все эти ваши айфоны, компьютеры и прочие гаджеты не оказывались на свалке, откуда свинец попадает в окружающую среду. Поэтому придумали серию бессвинцовых припоев, когда олово разбавлено висмутом, или вовсе используется в чистом виде, стабилизированное добавками, например, серебра. Но эти припои дороже, хуже по характеристикам, более тугоплавкие. Поэтому оловянно-свинцовые припои надолго останутся в ответственных изделиях военного, космического, медицинского применения.

Кроме того, бессвинцовые припои склонны к образованию «усов». Оловянные усы — длинные тонкие кристаллы, вырастающие из оловянного припоя — причина отказов и сбоев аппаратуры. К сожалению, присадки в припои не позволяют на 100% прекратить рост «усов», поэтому оловянно-свинцовые припои, как проверенные временем, используются в критичных системах — космос, медицина, военка, атомные применения. Подробнее про усы.

Факты об олове

  • Чистое олово подвержено «оловяной чуме», когда при температурах ниже 13,2 °C олово меняет свою кристаллическую решетку, превращаясь из блестящего металла в серый порошок (как при нагревании алмаз превращается в графит). Согласно байкам, оловянная чума — одна из причин поражения Наполеоновской армии в условиях суровых российских городов (представьте, как на морозе ваши пуговицы, ложки, вилки, кружки превращаются в серый порошок). И вполне состоявшийся факт, что оловянная чума стала одной из причин которая погубила экспедицию Скотта — консервные банки, емкости с топливом были пропаяны оловом и на морозе просто развалились. Небольшая добавка висмута практически устраняет оловянную чуму.
  • Олово проводит электрический ток в 7 раз хуже меди.
  • Олово используется как защитное покрытие консервных банок — луженая жесть при контакте с пищей не делает её опасной. (но так как олово правее железа в ряду напряженности металлов, лужение не защищает железо от коррозии гальванически, как цинк, который левее железа в ряду напряженности. Как работает гальваническая защита можно прочитать по ссылке).
  • До широкого распространения алюминия, фольгу делали из олова, её называли «станиоль» (от stannum — латинское навание олова).
  • Не пытайтесь отремонтировать ювелирные украшения при помощи мягких оловянных и оловянно-свинцовых припоев. Прочность соединения будет неприемлемой, а наличие легкоплавкого припоя на поверхности осложнит нормальную пайку твёрдыми припоями.

Легкоплавкие припои

На базе сплавов с содержанием олова были разработаны легкоплавкие припои. И даже очень легкоплавкие припои, которые плавятся в горячей воде. Хороший список сплавов есть в Википедии.

Гранулированный припой
Катушки и прутки оловянно-свинцовых припоев. Проволока из припоя содержит центральный канал с флюсом, облегчающим процесс пайки.

Основные припои для радиоаппаратуры

  • ПОС-61 — 61% олова, остальное — свинец. Температура плавления (ликвидус) 183 °C. Есть множество сходных по составу и по свойствам импортных припоев, в которых пропорции компонентов отличаются на пару процентов, например Sn60Pb40 или Sn63Pb37.
  • ПОС-40 — 40% олова. Остальное — свинец. Температура плавления (ликвидус) 238 °C Менее прочный, более тугоплавкий, неэвтектический (плавится не сразу, есть диапазон температур при котором припой больше походит на кашу). Но благодаря тому, что чуть ли не в два раза дешевле (олово дорогое), применяется для неответственных соединений — пайка экранов, шин. Аналогичны припои ПОС-33 (температура плавления 247С), ПОС-25 (температура плавления 260С), ПОС-15 (температура плавления 280С).
  • Бессвинцовые припои. Для пайки медных водопроводных труб горелкой чаще всего используют мягкий припой с 3% меди (Sn97Cu3). Он не содержит свинца, потому пригоден для питьевой воды. По экологическим причинам современную электронику на заводах паяют в основном бессвинцовыми припоями. Хорошая статья.

Замыкают список совсем легкоплавкие припои:

  • Сплав Розе: 25% Sn, 25% Pb, 50% Bi. Температура плавления +94 °C.
  • Сплав Вуда: 12,5% Sn, 25% Pb, 50% Bi, 12.5% Cd Температура плавления +68,5 °C.

Применяются для лужения печатных плат любителями, так как плавятся в горячей воде, и можно резиновым шпателем под слоем кипящей воды быстро покрыть припоем медную фольгу печатной платы. В технике их используют для пайки деталей, не выдерживающих нагрева до обычной температуры припоев, или в тех случаях, когда зачем-то нужен очень легкоплавкий металл (например, для датчика температуры).

Если спаять подпружиненные контакты легкоплавким припоем, то получится простой и надежный термопредохранитель, при превышении температуры припой плавится и контакты разрывают цепь. Правда, предохранитель получится одноразовым. Во многих советских телевизорах в блоке строчной развертки была защита из обычной стальной спиральной пружинки, припаянной на легкоплавкий припой. При перегреве, в том числе от большого тока через пружинку, она отпаивалась и отрывалась. Предохранители такого типа очень хороши как защита от пожара.

Пайка проводов

С пайкой проводов приходится сталкиваться чаще всего. Это может быть пайка проводов электросети вашего дома, пайка проводов в авто, пайка проводов наушников (рассмотрим подробнее позже) и т.д. В результате удается получить прочное, надежное соединение. Рассмотрим поэтапно процесс пайки проводов:

  1. Концы проводов, которые будете соединять, торцуем ровно кусачками и снимаем шар изоляции длиной 3-4 см.
  2. При необходимости очищаем провода в зоне пайки от загрязнений и обезжириваем их.
  3. Соединяем провода между собой при помощи скручивания. Существует несколько вариантов скручивания. Наиболее распространенным является простое последовательное скручивание. В распределительных коробках электросетей, как правило, используется параллельное.
  4. Покрываем соединение проводов флюсом и начинаем наносить на него припой. В процессе пайки провод необходимо постепенно прокручивать для того, чтобы припой лег ровным шаром и заполнил все пустоты между проводами. Важный момент – необходимо правильно подобрать флюс зависимо от материала проводов. Если для пайки медных проводов подходит даже обычная канифоль, то для пайки алюминиевых нужно использовать только активный флюс.
  5. После того как припой остынет, место соединения изолируем изолентой или термоусадочной трубкой.

Такую методику целесообразно использовать для пайки электрических проводов. Если есть задача припаять провод к какой-либо поверхности, например, к контактам на плате, то предварительно кончики проводов необходимо залудить.

Залуженные кончики проводов

Для этого с провода также снимаем изоляцию и обезжириваем. После этого покрываем его флюсом и наносим припой. Также нужно залудить поверхность, к которой провод будет припаян. После этого процесс пайки будет легким и быстрым, а само соединение будет качественным и прочным.

Как паять провода наушников?

Наверное, у каждого из нас в ящике лежит куча старых нерабочих наушников. Если вы уже решили научиться паять, то грех будет не попробовать воскресить хотя бы одни из них.

Обрыв провода – наиболее распространенная причина выхода из строя наушников. Казалось бы, достаточно просто определить место разрыва и перепаять провода. Но не все так просто. В процессе пайки проводов наушников приходится сталкиваться с проблемой лужения проводов. Провода наушников имеют лаковое покрытие, к которому припой ну просто никак не хочет приставать. Поэтому в первую очередь от него необходимо деликатно избавиться. Для этого существует несколько способов:

  1. Механический: при помощи скальпеля или канцелярского ножа аккуратно счищаем шар лаковой изоляции. При этом лезвие держим перпендикулярно проводу.
  2. При помощи огня: выжигаем слой лаковой изоляции зажигалкой (не рекомендуем).
  3. С использованием активных флюсов: наиболее оптимальный метод. Достаточно просто покрыть кончики проводов активным флюсом и залудить их паяльником. Лудить такие провода лучше на куске древесины. Движения паяльником должны быть такими, будто вы втираете припой в провод.

Пайка проводов

Залуженные таким образом провода легко паять как между собой, так и к коннектору наушников.

Подробнее с полным процессом пайки наушников вы можете ознакомиться в нашем видео.

Как правильно паять?

Итак, паяльник вы залудили и подготовили к пайке. Теперь необходимо подготовить детали, которые вы будете спаивать между собой. В первую очередь детали необходимо очистить от загрязнений и обезжирить. Для этого подойдут разного рода очистители на основе изопропилового спирта или растворители. Если на деталях есть следы коррозии, то их также необходимо устранить – зависимо от характера поверхности это можно сделать механическим способом или при помощи специальной химии.

  • нанесение припоя на жало паяльника и перенос его в зону пайки;
  • нанесение припоя непосредственно в зону пайки.

При нанесении припоя паяльником необходимо небольшое количество припоя расплавить на кончике жала. После этого жалом прижимаем детали в зоне пайки. В процессе пайки флюс будет испаряться, его остатки можно смывать или оставить – все зависит от того, какой флюс вы используете. Этот метод подходит для пайки мелких деталей.

Нанесение припоя

При пайке другим способом – нанесением припоя непосредственно в зону пайки – необходимо паяльником прогреть детали до температуры пайки и сразу после этого подать в зону пайки припой. Расплавляясь, припой заполнит пространство между деталями пайки и обеспечит надежное соединение. Таким способом, как правило, паяют массивные детали и радиокомпоненты на платах.

Работа з платой

В процессе пайки как одним, так и другим способом важно правильно подобрать температуру паяльника, поскольку от этого напрямую будет зависеть качество пайки. Припой в расплавленном виде должен иметь состояние близкое к жидкому. Наверняка все помнят фрагмент из фильма «Терминатор 2: Судный день» на металлургическом заводе, когда жидкий терминатор T-1000 восстановился из разогретых кусочков. Вспомнили? Так вот – консистенция припоя должна быть такой, как эти разогретые кусочки 🙂

Основные признаки того, что температура паяльника недостаточна:

  • Припой после остывания становится матовым.
  • Припой плохо растекается по поверхности.
  • Припой после остывания имеет зернистую структуру.

Плохо припаяно

В результате этого вы получите так называемую холодную пайку. Пайка чрезмерно нагретым паяльником тоже ни к чему хорошему не приведет – припой будет очень быстро окисляться и плохо лудиться. Как в первом, так и во втором случае вы получите в конечном результате соединение деталей, которое будет иметь плохую механическую прочность и со временем просто разрушится.

Как правило, температура паяльника подбирается индивидуально для каждого типа пайки. Вместе с этим, для большинства типов пайки припоями ПОС-60 идеальной является температура 240-300 °C – начинать необходимо от наименьшего значения и постепенно увеличивать её по мере необходимости. При правильно подобранной температуре в конечном результате у вас должно быть блестящее соединение.

Хорошо припаяно

Припоя не должно быть слишком много, но вместе с тем его должно быть достаточно для равномерного заполнения пространства между деталями. И главное – не держите долго паяльник в зоне пайки. Для того, чтобы припой расплавился и заполнил пространство между деталями, достаточно 3-4 секунд.

Итак, основные азы пайки мы с вами рассмотрели, а теперь пройдемся по наиболее распространенным применениям пайки в повседневной жизни.

Статьи по теме

Главная → Справочник → Статьи → БлогФорум

ORL0

Перестановка букв даёт нам припои с флюсом без канифоли — к таковым на российском рынке относятся «Изагри» ФР 544-2-Т1, а также припои Felder серии ISO-Core ELR.

Скажу честно — ISO-Core ELR однозначно является моим любимым припоем для ручной пайки вот уже много лет, вытеснив в этом качестве Asahi FC5005. Во-первых, в нём физически мало флюса, всего 1 %, соответственно, немного и остатков. Во-вторых, он обеспечивает великолепную паяемость чистых поверхностей. В-третьих, не оставляет чёрных горелых остатков.

ROL0

Большинство дешёвых припоев не имеют внятной (или никакой вообще) сопроводительной документации относительно используемого флюса, но обычно это просто канифоль — что, очевидно, относит их к классу ROL0. К таковым, например, относятся распространённые, недорогие и в целом вполне приличные отечественные припои ООО «ПМП».

Официальное указание на класс ROL0 из отечественных припоев имеет, например,«Изагри» с флюсом ФВК 525-2-T1 (обратите внимание, у «Изагри» именно последняя цифра в маркировке определяет активность флюса!).

Из зарубежных — широко известны припои Asahi с флюсами FC5000 и FC5005 (если вам интересна разница, то первый допускает низкотемпературную пайку от 270 °С, а второй только для 320 °С и выше), а также Felder ISO-Core EL (не путать с ISO-Core ELR) и Stannol HF32-SMD.

Эти припои хорошо паяют только чистые поверхности (более-менее свежее лужение, иммерсионное золочение и т.п.), кроме того, после них остаётся некрасивый коричневатый остаток подгоревшей канифоли.

Замечу, что хороший припой в этой категории уже будет отличаться от плохого: так, Asahi, Stannol и Felder в пайке ощутимо превосходят продукцию ПМП, подозреваю, из-за наличия в их флюсе дополнительных присадок. Между собой, впрочем, они тоже отличаются — у Felder содержание флюса аж 3,5 %, у Asahi 2,0 %, у Stannol всего 1,0 %.

Вспомогательные приспособления для пайки

Для того, чтобы пайка была безопасной и удобной вам также понадобятся вспомогательные инструменты:

  • подставка для паяльника;
  • «третья рука»;
  • очистители для жал;
  • ручной инструмент.

Подставка для паяльника

Несмотря на то, что мы отнесли подставку для паяльника к вспомогательным приспособлениям, ее роль весьма существенна в процессе пайки. Паяльник должен иметь свое четкое место на рабочем столе и быть надежно зафиксированным. Это обезопасит вас от случайного ожога в процессе пайки, а также снизит вероятность прожечь рабочий стол. При выборе подставки обратите внимание, чтобы в ней было место под губку для очистки жал – так намного удобнее в процессе пайки.

Подставка

Также вы можете смастерить подставку самостоятельно. Вот один из примеров самодельных подставок.

Самодельная подставка

«Третья рука»

При пайке проводов и небольших плат очень удобно использовать так называемую «третью руку». Такое название она получила не просто так. Благодаря зажимам вы можете надежно зафиксировать объекты пайки в любом положении. Ассортимент третьих рук довольно широкий – от обычных штативов с зажимом, до моделей с увеличительными линзами и держателем для паяльника.

Третья рука

Очистители для жал

В процессе пайки под действием высокой температуры жало достаточно быстро окисляется и требует периодического очищения от окислов и нагара. Для этого используются целлюлозные губки и стружка для очистки жал. С их помощью вы постоянно будете поддерживать жало в чистоте, а это, в свою очередь, напрямую влияет на удобство пайки. Также ими легко снимать лишний припой с жала.

Еще один важный аксессуар – активатор паяльного жала. Он имеет практическое применение в основном для жал с никелевым покрытием, которые имеют сильные загрязнения. В отличие от обычных медных жал, их нельзя очищать абразивными инструментами. Поэтому, если такое жало перестало брать припой и обычные методы не помогают, не спешите его выбрасывать – обычно активатор помогает восстановить его свойства.

Ручной инструмент

К ручному инструменту, который будет полезен при пайке, можно отнести:

  • пинцеты;
  • кусачки;
  • набор вспомогательных инструментов для пайки..

Использовать пинцеты довольно удобно при пайке и демонтаже электронных компонентов на платах. Для этого хорошо подходят как обычные прямые пинцеты, так и пинцеты с загнутым носиком. При пайке элементов особенно чувствительных к статическим напряжениям используются антистатические пинцеты.

Пинцет

Кусачки имеют широкое применение в быту, при проведении паяльных работ без них также никак не обойтись, особенно при пайке проводов. Также ими можно обрезать остатки ножек радиокомпонентов при пайке их на плату.

Кусачки

Набор вспомогательных инструментов для пайки имеет широкое применение при проведении паяльных и демонтажных работ. В его состав входят разного типа зажимы и держатели, которые будут полезными при пайке компонентов на плату. Также в комплекте есть щеточки для очистки плат от остатков припоя и флюса.

Ручной инструмент

ROM0

Встречаются нечасто, хотя весьма интересны для пайки выводных компонентов, разъёмов и т.п. деталей на платах в не очень хорошем состоянии — так как, с одной стороны, имеют активность выше припоев категории L, а с другой, не требуют отмывки и не содержат галогенов.

Тем не менее, при некотором желании найти можно, например, «Изагри» выпускает модель ФРК 525-2-Т2, а Asahi — припой с флюсом HF-532.

Нихромы

Для изготовления нагревателей, мощных сопротивлений требуются сплавы со следующими требованиями:

  • Относительно высокое удельное сопротивление — иначе нагреватель придется делать длинным и тонким, что отрицательно скажется на долговечности.
  • Устойчивость к окислению на воздухе. Если в колбу лампы накаливания попадет воздух, то спираль очень быстро сгорит. При высоких температурах скорости химических реакций растут, и кислород воздуха начинает окислять даже стойкие при комнатной температуре металлы.
  • Иметь приемлемые механические характеристики. Низкая пластичность и повышенная хрупкость негативно скажется на надежности изделия.

Нагреватели обычно изготавливают из следующих сплавов:

Нихром (55-78% никеля, 15-23% хрома) рабочая температура до 1100 °C хотя нихромы — это целый класс сплавов с небольшой разницей в составе.
Фехраль, название образовано от состава FeCrAl (12-27% Cr, 3.5-5.5% Al, 1% Si, 0.7% Mn, остальное Fe) рабочая температура до 1350 °C (Иногда называют канталом — kanthal, это не марка сплава, а торговая марка, которая стала нарицательной, как например «термос»).

Добавка хрома обеспечивает образование защитной пленки на поверхности сплава, благодаря чему нагреватели из нихрома могут длительное время работать на воздухе с высокой температурой поверхности.

Фехраль после нагрева становится ломким. Нихром после нагрева еще можно как-то гнуть. При этом фехраль дешевле нихрома, в рознице не так заметно, но ощутимо в оптовых партиях.

Нихромовая спиралька с фитилем внутри — испаритель электронной сигареты. Нихромовой струной, подогреваемой электрическим током, режут пенополистирол. Также из нихрома изготавливают термосьемники изоляции — на сегодняшний день самый надежный способ снять изоляцию с провода и не повредить токопроводящую жилу.

На удивление, достаточно трудно купить нихром в виде проволоки в небольших количествах, местные продавцы о количествах менее килограмма даже слышать не хотят. Так что, если понадобится изготовить нагревательный элемент — то проще перемотать нихром с какогонибудь неисправного тепловентилятора.

Концы нагревательных элементов обычно приваривают к тоководам или зажимают механически — винтом или опрессовкой.

TL;DR

  • для пайки SMD-компонентов и сложных печатных плат — флюсы категории ROL0 и ORL0. Если надо дёшево — то можно взять припои «ПМП» с канифолью, если есть средства — Stannol HF32-SMD, Asahi FC5005, Felder ISO-Core EL, а ещё лучше — Felder ISO-Core ELR.

  • для пайки печатных плат и компонентов в не очень хорошем состоянии — флюсы категории ROM0 и ROM1. Felder ISO-Core RA, Asahi HF-532. Желательно, но не обязательно протереть или промыть место пайки после завершения работ.

  • для пайки силовых проводов и разъёмов в плохом состоянии — флюсы категории ROH1. Asahi CF-10 и его аналоги, причём обратите внимание: если CF-10, несмотря на свою активность, довольно толерантен к нарушению техпроцесса и сохранению остатков флюса, то кажущиеся удобными водосмываемые флюсы на самом деле могут доставить куда больше проблем.

Что же касается трубчатых припоев других моделей и производителей — как правило, у серьёзных производителей есть даташиты, в которых указан класс флюса, условия его применения, температурные режимы, способы удаления.

Если же такого документа нет, а проводить самостоятельно тестирование на остаточное сопротивление (включая сопротивление через неделю работы устройства в тёплой влажной среде, а не только сразу после пайки), коррозию, содержание галогенов и так далее вы не готовы — таким припоем не стоит пользоваться ни для чего, кроме грубых работ или одноразовых поделок.

Как залудить жало паяльника?

Если у вас готов полный арсенал для пайки, то можно приступать непосредственно к самой пайке. В первую очередь нужно залудить жало паяльника. Как правило паяльники комплектуются двумя типами жал:

  • медными;
  • медными с никелевым покрытием.

Медному жалу перед залуживанием можно придать необходимую форму – конус, односторонний срез, двусторонний срез – при помощи абразивного материала, например, надфиля. Для никелевого жала использовать абразивные материалы нельзя, поскольку вы уничтожите защитное покрытие, и оно не будет лудиться вообще.

Сам процесс лужения нового жала, которые еще не было в использовании, одинаков для обоих типов жал. Для этого необходимо разогреть паяльник до рабочей температуры, погрузить его в канифоль и сразу после этого покрыть припоем.

Лужение жала

Припой должен равномерно покрыть кончик жала. Для того, чтобы припой лучше приставал, залуженное жало можно потереть об дощечку или плотный кусок картона.  Также в процессе пайки необходимо всегда следить, чтобы жало было чистым от окислов и покрыто тонким слоем припоя. И главное – не допускайте перегрева жала, особенно жала с никелевым покрытием.

Припой припою рознь, или Несколько слов о флюсах

Просмотры

Общаясь сейчас со связистами на предмет «сообщите, кому какой припой нужен», получил достаточно типовой ответ — «хороший, чтобы всё паял». Углублённое обсуждение вопроса вынесло на поверхность несколько запомнившихся людям торговых марок — в первую очередь Asahi — но и только. Про флюсы и их различия сказано ничего не было.

Спектр задач по пайке при этом у связистов простирается от антенно-фидерного хозяйства (кабели, разъёмы), через аксессуары (зарядки, гарнитуры) и до ремонта собственно радиоаппаратуры (SMD-компоненты).

В связи с этим я не только провёл краткий ликбез и показал пару табличек, но и хочу написать про это здесь, чтобы потом было удобно давать ссылку 🙂

Итак: какие бывают флюсы в припоях, что лучше — ORL0 или ROM1 (я проверил гуглем, обе аббревиатуры на Хабре встречались 0 раз), где искать эту информацию и зачем вообще это надо.

Как известно, припой для радиомонтажных работ бывает проволокой или трубчатый — с флюсом внутри. Второй намного удобнее в большинстве случаев, так как требует меньше операций для работы (при хорошем флюсе предварительно чем-либо смазывать паяемые поверхности вообще не требуется), лучше смачивает спаиваемое соединение, более толерантен к передержке и перегреву места пайки, и так далее.

Вместе с тем, флюсы в припоях — как и вне припоев — очень существенно различаются по своим свойствам, простираясь от обычной канифоли до пригодных для лужения кастрюль агрессивных составов. И мало того, что магазины — но и производители ширпотребных припоев часто вообще не указывают, что именно за флюс они применяют (впрочем, обычно это оказывается просто канифоль, как самая дешёвая).

Между тем, нас на практике интересуют по сути только две характеристики флюса: наличие остатков и агрессивность. По крайней мере, если рассматривать только обычные оловяно-свинцовые или оловяно-медно-серебряные припои для пайки РЭА, а не специфических металлов и сплавов типа алюминия.

Наличие остатков определяет вид места пайки после, собственно, её завершения. Идеальный флюс оставляет после себя полностью прозрачный или слегка желтоватый остаток, который — даже без отмывки — минимально портит внешний вид места пайки. Флюс похуже оставляет после себя коричневый, хорошо заметный остаток, который очень хочется так или иначе отчистить.

Наличие остатков и их цвет зависит от базового материала флюса.

Агрессивность определяет, насколько хорошо флюс помогает паять не идеально чистые поверхности — то есть покрытые тем или иным слоем окислов — без предварительной механической зачистки. С другой стороны, агрессивный остаток, не отчищенный с платы после пайки, может вызвать коррозию дорожек и выводов (особенно при работе устройства в среде с высокой температурой и влажностью), а также уменьшить сопротивление между соседними выводами, вплоть до фатальных сбоев устройства.

Агрессивность определяется содержанием во флюсе галогенов (фтора и брома).

Чтобы быстро понять, куда применяется тот или иной флюс, человечество разработало довольно удобную 4-символьною систему обозначений:

(c) Stannol GmbH, https://www.soselectronic.com/a_info/resource/pdf/ine/Fluxes_EN.pdf
(c) Stannol GmbH, https://www.soselectronic.com/a_info/resource/pdf/ine/Fluxes_EN.pdf

Первые две буквы означают базовый материал флюса, то есть, дают нам примерное понимание количества и качества остатков.

  • RO — rosin — канифоль. Та самая, тёплая и ламповая, по сию пору остаётся основным базовым материалом для флюсов. Увы, даёт тот самый характерный коричневый остаток.

  • RE — resin — смола. Сюда относятся натуральные смолы (канифоль же — не смола, а получаемый из неё продукт).

  • OR — organic — синтетическая органическая основа. Вторая по популярности основа флюсов, и большое её преимущество — отсутствие тёмного остатка после пайки.

  • IN — inorganic — синтетическая неорганическая основа.

Третья буква означает класс активности флюса: от низкой (L) через среднюю (M) к высокой (H).

Четвёртый символ — для разнообразия, цифра — означает содержание галогенов. 0 — отсутствуют, 1 — присутствуют в количестве, определяемом классом активности (до 0,5 % в L, от 0,5 до 2 % в M, более 2 % в H).

Практические последствия высокой активности с точки зрения применимости флюса также несложно пояснить:

(c) Stannol GmbH, https://www.soselectronic.com/a_info/resource/pdf/ine/Fluxes_EN.pdf
(c) Stannol GmbH, https://www.soselectronic.com/a_info/resource/pdf/ine/Fluxes_EN.pdf

Флюсы класса L не вызывают коррозии и проходят тест на минимальное сопротивление более 100 МОм даже без отмывки их после пайки. Их можно использовать без последующей отмывки.

Флюсы класса M могут вызвать незначительную коррозию места пайки, но по-прежнему проходят 100-МОм тест. Их желательно смывать с платы после пайки.

Флюсы класса H вызывают серьёзную коррозию и без отмывки не проходят тест на сопротивление. Их необходимо смывать с платы после пайки.

Что из этого на практике мы можем встретить в магазинах?

Углерод

С — углерод. Не совсем металл, но тоже проводник. Графит, угольная пыль — не такие хорошие проводники как металлы, но зато очень дешевые, не подвержены коррозии.

Примеры применения

Компонент резисторов. В виде пленок, в виде объемных брусков в диэлектрической оболочке.

Добавка в полимеры для придания электропроводности. Для защиты от образования статического электричества достаточно ввести в состав полимера мелкодисперсный графит, и пластик из диэлектрика становится очень плохим проводником, достаточным, что бы статический заряд с него стекал. При работе с изделиями из такого пластика они не будут прилипать и искрить, что важно при пожароопасности или работе с электроникой.

Гранулированный припой
Токопроводящий лак на базе суспензии графита.

На базе полимеров, заполненных мелкодисперсным графитом, основаны различные нагреватели — пленочные электронагреватели теплых полов, греющие кабели для систем водоснабжения, нагреватели для одежды и т.д. Высокий коэффициент расширения полимеров при нагреве приводит к отрицательной обратной связи, что делает такие нагреватели саморегулирующимися и потому безопасными. При пропускании тока через такой полимер, он нагревается, от нагрева расширяется, контакт между частичками углерода в матрице из полимера ухудшается, от этого увеличивается сопротивление — уменьшается протекаемый ток, уменьшается нагрев. В итоге, устанавливается некоторая температура полимера, стабильно поддерживающаяся этим механизмом обратной связи без каких либо внешних устройств.

Гранулированный припой
Нагреватель от печки лазерного принтера. Основа — фарфор, проводники — серебро. Нагреватель — углеродная композиция, покрыта для защиты слоем глазури.

Аналогично устроены полимерные самовосстанавливающиеся предохранители. Если ток через такой предохранитель превысит номинальный, от нагрева полимер в составе расширяется, и резко увеличившееся сопротивление прерывает ток через предохранитель до некоторого небольшого значения. Такие предохранители обеспечивают медленную защиту, но не требуют замены предохранителя после каждой аварии.

Угольный сварочный электрод — используется для сварки, когда от электрода требуется только поддерживать дугу не плавясь. Уголь значительно дешевле вольфрама, но менее прочен и постепенно сгорает на воздухе.

Гранулированный припой
Электроды от дуговой лампы, использовавшейся для киносъемок. Марка электродов КСБ — Уголь КиноСьемочный Белопламенный неомедненный.

Медно-графитовые материалы. Получают спеканием порошка меди и графита в разных пропорциях. В зависимости от состава могут быть от чёрных как уголь до темно красных с медным блеском. Используется как материал скользящих контактов — щеток электрических приборов. Такие щетки обеспечивают низкое сопротивление вращению — хорошо скользят по контактам коллектора. Кроме того их твёрдость заметно ниже твёрдости металла коллектора, так что в процессе работы истираются и подлежат замене дешевые щетки а не дорогой ротор.

Гранулированный припой
Изношенные щетки от двигателя стиральной машины. Плохой контакт щеток с коллектором — причина повышенного искрения.

Источники

Если вдруг понадобился срочно угольный электрод, например сварить термопару, самый доступный способ — вытащить центральный электрод из солевой батарейки (маркировка которой начинается с R а не LR, щелочные («алкалиновые») не подойдут). Угольный стержень из батарейки содержит в себе следы электролита, поэтому перед применением не лишнем будет промыть и прокипятить его в воде для удаления остатков электролита.

Сплавы для изготовления термостабильных сопротивлений

У всех материалов есть ТКС — температурный коэффициент сопротивления, мера того, насколько изменяется сопротивление с изменением температуры. Он может быть положительным — как у металлов, с ростом температуры сопротивление растет, может быть отрицательным, как у полупроводников, с ростом температуры сопротивление падает. При изготовлении точных измерительных приборов необходимо иметь сопротивления с минимальным дрейфом номинала в зависимости от температуры. Для этого изобрели сплавы с минимальным ТКС:

Константан (59% Cu, 39-41% Ni, 1-2% Mn)
Манганин (85% Cu, 11.5-13.5% Mn, 2.5-3.5% Ni)

Таблица, с указанием температурного коэффициента (обозначается как α) для различных
металлов:

Если упростить, то коэффициент α говорит, во сколько раз изменится сопротивление проводника при изменении температуры на один градус Цельсия.

Припои

Пайка — это процесс соединения двух деталей при помощи припоя, материала с температурой плавления меньшей, чем у соединяемых деталей. Например, соединение двух медных проводников при помощи олова. Именно использование припоя — основное отличие от сварки, когда детали соединяются расплавом из самих себя, например стальной крюк к стальной двери приваривается при помощи стального плавящегося сварочного электрода.

Припои чаще классифицируют на две группы — тугоплавкие (температура плавления 400°С и более) и легкоплавкие. Или, иногда, на твёрдые и мягкие. Учитывая, что мягкие припои обычно легкоплавкие, то часто твёрдые припои синоним тугоплавких, а мягкие припои — легкоплавких.

В электронной технике припои используют для создания надежного электрического контакта. Основные припои в электронной технике — мягкие, на базе олова и оловянно-свинцовых сплавов. Все остальные экзотические припои рассматриваться не будут.

ROM1

Хороший вариант для проводов, разъёмов, контактов и прочих крупных элементов, которые некритичны к отмывке слабокоррозионного флюса, абсолютно некритичны к сопротивлению этого флюса, но зато часто бывают в той или иной степени окисленными и сопротивляющимися пайки.

Паять же платы флюсами группы **M1 в принципе можно, но не нужно — такая степень окисления, чтобы не справился **L0, на живых печатных платах встречается редко.

К этой группе из встречающегося в продаже относятся, например, Felder ISO-Core RA — характерные зелёные катушечки, в отличие от синих ELR.

Прочие проводники

Термопарные сплавы

Для изготовления термопар используют сплавы стойкие к высоким температурам, но при этом обладающие высокой ТермоЭДС. Подробнее про термопары можно прочитать в соответствующей литературе.

  • Хромель (90% Ni, 10% Cr)
  • Копель (43% Ni, 2-3% Fe, 53% Cu)
  • Алюмель (93-96% Ni, 1,8-2,5% Al, 1,8-2,2% Mn, 0,8-1,2% Si)
  • Платина (100% Pt)
  • Платина-родий (10-30% Rh)
  • Медь (100% Cu)
  • Константан (59% Cu, 39-41% Ni, 1-2% Mn)

Соединяя два проводника из двух разных металлов получают термопары, например термопара типа K (ТХА — Термопара Хромель-Алюмель). Самые распространенные пары: хромель-алюмель, хромель-копель, медь-константан (для низких температур), платина-платинородий (для точных измерений и для высоких температур).

Оксид Индия-Олова

Оксид Индия — Oлова (Indium tin oxide или сокращённо ITO) — полупроводник, но обладает невысоким сопротивлением, а самое главное, пленка из оксида индия-олова прозрачна.

Это свойство используется при производстве ЖК дисплеев, сетка электродов на поверхности стекла нанесена именно из оксида индия-олова. Также резистивные touch панели имеют прозрачное проводящее покрытие.

Пленка ITO едва видна в отражении, чтобы хоть как то она была заметна пришлось разобрать ЖК дисплей:

Гранулированный припой
Стекла от ЖК индикатора электронных часов. Индикатор подключался к электронной схеме через токопроводящую резинку, гребенка контактов видна в нижней части стекла.

Гранулированный припой
На просвет проводящая пленка не видна

Гранулированный припой
На удивление, сопротивление пленки довольно низкое.

На этом мы закончили проводники. В следующей части начнем обзор диэлектриков

Ссылки на части руководства:

1: Проводники: Серебро, Медь, Алюминий.
2: Проводники: Железо, Золото, Никель, Вольфрам, Ртуть.
3: Проводники: Углерод, нихромы, термостабильные сплавы, припои, прозрачные проводники.
4: Неорганические диэлектрики: Фарфор, стекло, слюда, керамики, асбест, элегаз и вода.
5: Органические полусинтетические диэлектрики: Бумага, щелк, парафин, масло и дерево.
6: Синтетические диэлектрики на базе фенолформальдегидных смол: карболит (бакелит), гетинакс, текстолит.
7: Диэлектрики: Стеклотекстолит (FR-4), лакоткань, резина и эбонит.
8: Пластики: полиэтилен, полипропилен и полистирол.
9: Пластики: политетрафторэтилен, поливинилхлорид, полиэтилентерефталат и силиконы.
10: Пластики: полиамиды, полиимиды, полиметилметакрилат и поликарбонат. История использования пластиков.
11: Изоляционные ленты и трубки.
12: Финальная

Читайте также:  Как проверить пластиковые трубы после сварки
Оцените статью
Про пайку
Добавить комментарий