Типы процесс и принципы

Преимущества и недостатки полупроводниковых лазеров

Преимущества:

  • Эффективность использования энергии
  • Малые размеры и вес
  • Высокая электрическая эффективность
  • Низкие затраты на производство

Недостатки:

  • Влияние температуры на эффективность работы
  • Большой угол расходимости луча
  • Низкая направленность, монохроматичность и когерентность

Применение

  • Медицинские устройства (лазерная хирургия, косметология)
  • Коммуникационные системы
  • Промышленность (лазерная резка, сварка, маркировка)
  • Научные исследования

Примеры полупроводниковых лазеров на рынке

  1. Лазеры для резки металла
  2. Лазеры для медицинского применения
  3. Лазеры для коммуникаций
  4. Лазеры для научных экспериментов

Заключение

Полупроводниковые лазеры являются важным элементом современной технологии и нашли широкое применение в различных отраслях. Их эффективность, компактность и высокая электрическая эффективность делают их привлекательными для широкого круга потребителей. Однако, несмотря на все их преимущества, необходимо учитывать недостатки таких лазеров, такие как большой угол расходимости луча и влияние температуры на работу устройства.

Таблица с популярными полупроводниковыми лазерами:

МодельДлина волныВыходная мощностьПрименение
Ruby694 нм3 ВтМедицинская терапия
Nd:YAG1064 нм100 ВтДерматология
CO210600 нм30 ВтХирургия

Список преимуществ использования полупроводниковых лазеров:

  • Компактные размеры
  • Эффективность
  • Высокая скорость обработки
  • Высокое разрешение
  • Точность и контролируемая подача энергии
  • Модуляция света на высоких скоростях
  • Применение в медицинских диагностических устройствах
  • Использование в 3D-печати и аддитивном производстве

Полупроводниковые лазеры остаются ключевыми компонентами в широком спектре промышленных и медицинских устройств. Их уникальные характеристики делают их неотъемлемой частью современных технологий и научных исследований.

| Тип лазера          | Длина волны |
|---------------------|-------------|
| Красный             | 630-690 нм  |
| Зеленый            | 510-570 нм  |
| Синий               | 450-495 нм  |
| Фиолетовый          | 380-450 нм  |

Применение в медицине

Полупроводниковые лазеры играют ключевую роль в медицинской диагностике и лечении. Они используются в хирургии, офтальмологии, косметологии и других областях медицины. Вот некоторые области их применения:

  • Лазерная хирургия роговицы
  • Лазерная коррекция зрения
  • Лечение кожных заболеваний
  • Физиотерапия и реабилитация
  • Удаление татуировок и пигментации
Читайте также:  Паяльная станция 909d

Полупроводниковые лазеры обладают высокой эффективностью, безопасностью и точностью воздействия на ткани и клетки, что делает их незаменимыми в современной медицине.

Заключение

Полупроводниковые лазеры имеют широкий спектр применения в различных областях, начиная от медицины и фотоники, и заканчивая оптогенетикой и промышленными процессами. Их точность, эффективность и надежность делают их важным инструментом для исследований и применений в современном мире.



```markdown
Длина волны света, излучаемого полупроводниковым лазером, зависит от энергетического зазора полупроводникового материала, используемого в активной области. 

Материалы имеют разные энергетические зазоры, которые определяют энергетические уровни электронов в материале. Разница в энергии между этими уровнями соответствует определенным длинам волн света. 

Эти соединения – прямозонные полупроводники. Непрямозонные (кремний) света с достаточной силой и эффективностью не излучают.

## Диапазон длин волн

![IMAGE](https://rosku.ru/images/companies/11/9027707.jpg?1683019063236)

Рис. 5. Диапазон длин волн

Обычно используемые полупроводниковые материалы, такие как арсенид галлия (GaAs) и арсенид индия галлия (InGaAs), производят лазерное излучение в ближнем инфракрасном диапазоне. 

Конкретная длина волны может быть настроена в определенном диапазоне путем изменения состава и легирования полупроводникового материала. Например, полупроводниковые лазеры, работающие в телекоммуникациях, часто излучают свет с длиной волны около 1,3 или 1,5 микрометра. 

В 3- и 4-компонентных соединениях полупроводников энергия зоны разрыва может непрерывно меняться в широком диапазоне.

Наиболее распространенные полупроводниковые лазеры работают в ближней ИК части спектра, некоторые излучают красный (фосфид галлий-индия), синий или фиолетовый (нитрид галлия) цвета. Среднее инфракрасное излучение создают лазеры полупроводниковые (селенид свинца) и квантовые каскадные лазеры.

В последние годы были достигнуты успехи в разработке полупроводниковых лазеров, излучающих свет в других частях электромагнитного спектра, например, в синем и зеленом диапазонах волн. Эти достижения расширили спектр применения полупроводниковых лазеров, включая технологию дисплеев и медицинское лечение.

Полупроводниковые лазеры - это универсальные устройства, которые отличаются компактными размерами, высокой эффективностью и точным управлением, что делает их незаменимыми во многих технологических и научных областях.

## Органические полупроводниковые лазеры

Органические полупроводниковые лазеры - это тип полупроводникового лазера, в котором в качестве активной среды используются органические (на основе углерода) материалы. 

В отличие от традиционных неорганических полупроводниковых лазеров, в которых используются неорганические материалы, такие как арсенид галлия или фосфид индия, в них применяются органические соединения или полимеры. Эти материалы обладают уникальными свойствами и преимуществами для лазерных устройств.

## Импульсный выход полупроводниковых лазеров

Полупроводниковые лазеры работают в импульсном режиме для генерации лазерных импульсов короткой длительности. 

Два широко используемых метода для достижения импульсного выхода:

Переключение усиления: Переключение усиления включает модуляцию оптического усиления полупроводникового лазера путем изменения тока инжекции или формы импульса тока. При кратковременном увеличении тока выше порогового уровня происходит накачка среды усиления для создания инверсии населенности, что приводит к импульсному выходу. Полупроводниковые лазеры с переключением усиления могут проводить импульсы длительностью от наносекунд до пикосекунд с умеренной энергией импульса.

Читайте также:  Флорариум своими руками, ч.2 Расходные материалы | Пикабу

Блокировка режима: Режим блокировки — это техника, используемая для генерации сверхкоротких лазерных импульсов. В полупроводниковых лазерах блокировка мод может быть достигнута с помощью различных методов, таких как активная блокировка мод, пассивная и гибридная блокировка мод. Эти методы включают модуляцию показателя преломления или фазы лазерного резонатора для создания серии ультракоротких импульсов с пикосекундной, фемтосекундной или даже аттосекундной длительностью.

Маломощные монолитные лазеры и квантовые генераторы с внешним резонатором для формирования коротких импульсов могут производить синхронизацию мод.

Модуляция

Модуляция полупроводниковых лазеров может быть достигнута следующими методами:

Модуляция постоянным током (AM): Модуляция тока инжекции полупроводникового лазера напрямую модулирует его выходную интенсивность. Изменяя ток на желаемой частоте модуляции, можно соответствующим образом модулировать выходную мощность лазера. Этот метод обычно используется для приложений амплитудной модуляции (AM).

Частотная модуляция (ЧМ): Частотная модуляция полупроводникового лазера включает модуляцию его оптической частоты или длины волны. Это может быть достигнуто путем модуляции тока инжекции или путем подачи внешнего модулирующего сигнала на компонент внутри лазерного резонатора, например, решетку Брэгга. Частотная модуляция необходима в таких приложениях, как частотно-сдвиговая модуляция (FSK) в оптической связи.

Внешняя модуляция: Полупроводниковые лазеры также можно модулировать с помощью внешних устройств или модуляторов, помещенных в оптический тракт после выхода лазера. Примеры включают электрооптические модуляторы, акустооптические модуляторы и интерферометры Маха-Цендера. Внешняя модуляция обеспечивает большую гибкость и контроль над характеристиками модуляции, включая высокоскоростную модуляцию и различные форматы модуляции.

Типы процесс и принципы

Рис. 9. Структура полупроводникового лазера с гетеропереходом

Ограничения полупроводниковых лазеров

Полупроводники в электронных устройствах уязвимы к разрядам статического электричества, поэтому лазеры могут выйти из строя, если источник питания нестабилен и колеблется. Кроме того, полупроводниковые лазеры подвержены постепенному старению, они становятся менее эффективными и потребляют больше энергии.

Линза лазера, которая используется для коррекции луча, также может усугубить его хрупкость, и любое повреждение линзы сделает лазер неработоспособным.

Перспективы полупроводниковых лазеров

Мощные полупроводниковые лазеры своими достижениями произвели революцию в технологической отрасли. Эти лазеры заменили старые технологии и проложили путь для новых продуктов благодаря снижению стоимости и повышению эффективности.

Области применения полупроводниковых лазеров расширяются, и эта тенденция будет продолжаться в поисках экономичных, более мощных и короткоимпульсных лазеров.

Выбор подходящего припоя является ключевым этапом процесса пайки. Различные материалы обладают уникальными свойствами, которые влияют на качество и долговечность паяного соединения, а следовательно, и на надежность всего процесса сборки. Безусловно, каждый разработчик электронных схем должен быть знаком с основными типами припоев, их характеристиками и областями применения.Припои: разновидности, характеристики и области применения Пайка предполагает заполнение места соединения двух материалов (металлов) припоем, то есть другим металлом в жидком состоянии. Успех процесса пайки зависит от свойств припоя – температура его плавления должна быть значительно ниже, чем у соединяемых металлов. Пайка – это древний процесс, известный человечеству задолго до появления современной электроники. Он использовался в течение веков в различных областях, включая ювелирное дело и металлургию.Основные параметры припоев Перед началом процесса пайки необходимо выбрать припой, то есть материал (обычно в виде проволоки или пасты), который будет использоваться для создания паяного соединения.Выбор припоя зависит от многих факторов, включая материалы, которые необходимо соединить, и условия, в которых будет использоваться паяное соединение. Важными характеристиками припоя являются его температура плавления, прочность, электропроводность, коррозионная стойкость и устойчивость к окислению.На рынке представлено множество различных видов продукции, но их можно классифицировать по нескольким основным параметрам.Свинцовые и бессвинцовые сплавы Припой обычно представляет собой смесь нескольких различных металлов, выбранных на основе их свойств, таких как температура плавления и электропроводность. Свинец, обычно в сочетании с оловом, был основой большинства припоев с момента появления современной электроники.Этот металл характеризуется низкой температурой плавления, хорошей адгезией и текучестью, что делает процесс пайки быстрым, эффективным и надежным. Однако в целях охраны окружающей среды и здоровья были введены нормы, ограничивающие использование свинца в производстве электроники.Вероятно, наиболее эффективной является директива ЕС RoHS (Ограничение использования опасных веществ), целью которой является сокращение количества опасных веществ, попадающих в окружающую среду из электрических и электронных отходов.Бессвинцовые припои часто изготавливаются на основе смеси олова и серебра. Они обычно характеризуются более высокой температурой плавления и требуют использования большего количества флюса (или флюса с более высокой активностью) при пайке.В случае классической ручной пайки при правильном проведении процесса надежность соединений, выполненных свинцовыми и бессвинцовыми сплавами, должна быть сопоставима. Однако в случае электронных систем высшего класса, предназначенных для использования в сложных климатических условиях (например, в авиации), имеются определенные оговорки относительно надежности соединений, выполненных из бессвинцовых материалов.Особую тревогу вызывает явление так называемых “оловянных усов”, то есть волосообразных структур, возникающих на поверхности паяного соединения. Они могут привести к коротким замыканиям в системе, что является одной из причин выхода из строя электронного оборудования.Для определения возможности использования свинцовосодержащих сплавов в конкретном проекте необходимо проанализировать правовой статус и определить нормативы, которые распространяются на данную продукцию. Если это устройство бытовой электроники, изготовленное или предназначенное для экспорта в Европу, вполне вероятно, что потребуются бессвинцовые сплавы. Однако использование свинца может быть разрешено в случае оборудования специального назначения, например, предназначенного для авиационной и космической промышленности.Диаметр паяльной проволоки следует выбирать в зависимости от размеров паяемых деталей и соединений. Изделия, предназначенные для пайки электроники, имеют диаметр не более 1,5 мм, более толстые проволоки предназначены для других целей.Для электронных компонентов, где требуется высокая точность, часто используют проволоку с диаметром 0.5 мм или меньше. Это позволяет точно контролировать количество припоя и избегать перегрева чувствительных компонентов. При работе с более крупными деталями, такими как коннекторы или клеммы, может потребоваться проволока с диаметром 1 мм или более, чтобы обеспечить достаточную механическую прочность соединения.При использовании слишком толстого провода сложно контролировать процесс, что может привести к перегреву платы или даже короткому замыканию. С другой стороны, слишком тонкий провод потребует нанесения большого количества припоя на поверхность платы, что затруднит контроль его распределения.Паяльная проволока: с флюсом или без Большинство видов паяльной проволоки, доступных на рынке, содержат добавку флюса, которая значительно облегчает процесс пайки за счет химической очистки поверхности соединяемых металлов.Флюс в пайке — это вещества или смеси, предназначенные для удаления оксидов с паяемых или свариваемых поверхностей, снижения поверхностного натяжения и улучшения растекания жидкого припоя. Флюсы также защищают область пайки от воздействия окружающей среды.В зависимости от технологии, флюс может использоваться в виде жидкости, пасты или порошка. Существуют также паяльные пасты, содержащие частицы припоя вместе с флюсом. Иногда трубка из припоя содержит внутри флюс-заполнитель.Обычно рекомендуется использовать припой с добавкой флюса, за исключением случаев, когда требуется использовать определенный тип флюса, который недоступен в виде готовой смеси с припоем.Однако, паяльная проволока без флюса также имеет свои преимущества. Она позволяет более точно контролировать количество и тип флюса, который вы хотите использовать. Это может быть особенно полезно в сложных или деликатных проектах, где необходима высокая точность. Кроме того, паяльная проволока без флюса может быть предпочтительней, если вы хотите избежать остатков флюса на плате после пайки.В любом случае, выбор между паяльной проволокой с флюсом или без него зависит от конкретной задачи и личных предпочтений.Популярные виды свинцовых сплавов для припоев1) Сплав олова и свинца Сплав Sn/Pb отличается высокой универсальностью, что позволяет широко использовать его при пайке свинцом. Характеристики сплава меняются в зависимости от пропорций металлов.Обычно, самым распространенным сплавом является Sn60/Pb40 или Sn63/Pb37, где числа обозначают процентное содержание олова и свинца соответственно. Этот сплав обладает низкой температурой плавления, что делает его идеальным для большинства приложений пайки.2) Свинцово-цинковый сплав Сплавы Pb/Zn дешевле, чем Sn/Pb, из-за относительно высокой стоимости олова. Сплавы Pn/Zn также подходят для соединения оцинкованных поверхностей. Добавление цинка снижает температуру плавления сплава и снижает затраты на производство.Однако, несмотря на свои преимущества, свинцово-цинковые сплавы имеют и некоторые недостатки. Они менее устойчивы к коррозии по сравнению с оловянно-свинцовыми сплавами, что может привести к снижению долговечности соединений. Кроме того, цинк имеет тенденцию испаряться при высоких температурах, что может привести к образованию пустот в паяных соединениях.Популярные виды бессвинцовых сплавов для припоев1) Индиевые сплавы Индий широко используется в производстве электронных устройств. Его сплавы активно используются в процессе поверхностной сборки SMT (технология поверхностного монтажа). Для них характерна низкая температура плавления (около 157°С). Паяные соединения из этого материала характеризуются высокой устойчивостью к низким температурам.Кроме того, индиевые сплавы обладают отличной пластичностью и эластичностью, что делает их идеальными для создания надежных и долговечных соединений. Они также обладают высокой теплопроводностью, что позволяет эффективно рассеивать тепло в электронных устройствах.Однако, стоит отметить, что индий является довольно дорогим материалом, и его использование может значительно увеличить стоимость производства.2) Сплав олова и сурьмы Сплав Sn/Sb характеризуется высокой прочностью и устойчивостью к высоким температурам. Его температура плавления составляет около 235°C, что позволяет использовать этот материал, в частности, в процессе установки систем охлаждения и вентиляции.Кроме того, сплав Sn/Sb обладает отличной химической стойкостью, что делает его идеальным для использования в коррозийных средах. Он также обладает высокой электрической проводимостью.Однако, стоит отметить, что сурьма является токсичным элементом, и его использование должно быть строго контролируемым.3) Сплавы олова и серебра Сплавы Sn/Ag часто используются в процессах пайки волной и оплавлением. Добавка серебра повышает механическую стойкость паяного соединения, но обычно не превышает 3% от массы сплава. Увеличение примеси серебра может привести к ослаблению пластичности сплава.Однако, несмотря на это, серебро добавляет ряд важных преимуществ. Оно улучшает теплопроводность сплава, что может быть критически важно там, где эффективное рассеивание тепла является ключевым. Кроме того, серебро улучшает устойчивость соединения к коррозии, что может продлить срок службы паяного соединения. Наконец, серебро может улучшить электрическую проводимость сплава.Однако, стоимость серебра может сделать эти сплавы более дорогими по сравнению с другими вариантами.4) Сплав кадмий-цинкСплавы Cd/Zn обладают температурой плавления около 265°C. Паяное соединение, созданное с использованием этих сплавов, выделяется своей высокой прочностью. Это делает его идеальным выбором для систем, которые подвергаются интенсивным ударам и вибрациям.Однако, стоит отметить, что кадмий является токсичным элементом, и его использование в пайке подлежит строгому контролю. Несмотря на это, сплавы Cd/Zn обладают отличной устойчивостью к коррозии, что делает их подходящими для использования в суровых условиях. Однако, из-за своей токсичности и потенциального вреда для окружающей среды, использование этих сплавов становится все менее популярным, и они часто заменяются более безопасными альтернативами.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Когда я начинал работать в лаборатории, мне приходилось время от времени припаивать провода к металлизированным контактам. Тогда мы работали с полупроводниками, но те же материалы можно использовать и при пайке печатных плат, вопрос лишь в выборе правильного состава, подходящего для технологического процесса изготовления плат.

Производство печатных плат включает в себя несколько этапов — от изготовления пустой платы до сборки и упаковки. В процессе сборки для монтажа компонентов используются припои различных типов. Припои различаются по механическим характеристикам, требованиям к безопасности и утилизации, и это следует учитывать при планировании сборки. Переход к электронной технике без содержания свинца вытесняет свинцовые припои на задний план.

Я сейчас не буду углубляться в дискуссию о сравнении материалов на основе свинца и не содержащих свинец, поскольку массу информации по этому поводу можно найти в Интернете. Пока остановимся на различных видах пайки печатных плат, в частности, на различных материалах и процессах.

Материалы для пайки печатных плат

На рынке предлагается множество различных видов припоя, поэтому начинающему конструктору выбор лучшего типа припоя может показаться сложной задачей. Припои используются для создания электрических соединений между металлическими контактами за счет формирования расплавленным припоем (представляющим собой мягкий сплав) эвтектики, которая спаивается при остывании. Состав металлов, используемых для пайки печатной платы, определяет ее механическую прочность после затвердевания, температуру плавления и выделение паров во время пайки. Материалы для пайки печатных плат различают по материалу сердечника, металлическим компонентам и типам паяльного флюса.

Состав металлов

Припои на основе свинца относятся к мягким припоям, и именно они дали импульс развитию электронной промышленности. Температура их плавления составляет около 180-190 °C, а срок хранения — около 2 лет. Наиболее широко применяются следующие сплавы на основе свинца:

Существуют также припои с соотношениями Sn/Pb 50/50, 30/70 и 10/90. В качестве основного металла главным образом используется олово, поскольку оно снижает температуру плавления сплава, а свинец препятствует образованию оловянных усиков. Чем выше содержание олова, тем выше прочность паяного соединения на скол и растяжение. Компонент серебра в сплаве 62/36/2 Sn/Pb/Ag обеспечивает более низкое сопротивление контакта и устойчивость к коррозии. Обратите внимание, что существуют и другие типы припоя (индий, цинковый сплав и т. д.). Однако для печатных плат они не используются, поскольку они несовместимы с процессом производства плат.

Припой 60/40 Sn-Pb для ручной пайки по-прежнему продается в таких катушках.

Припои, не содержащие свинца, приобретают все большую популярность с тех пор, как в ЕС была принята директива об ограничении использования опасных веществ (RoHS), которая ограничивает применение свинца в электронике. Одна из проблем при использовании таких припоев заключается в том, что они в большей степени подвержены образованию оловянных усиков. Чтобы не допустить образования оловянных усиков, а также обеспечить защиту от влажности и коррозии, часто используются конформные покрытия.

Припой с флюсовым сердечником продается в виде единой катушки и содержит в сердечнике восстановитель. Этот восстановитель (о котором я расскажу ниже) удаляет с металлических контактов любые оксидные пленки, чтобы обеспечить высокую проводимость электрического контакта. Если вы паяете вручную, то следует обратить внимание на материал, содержащийся в сердечнике.

Материал сердечника припоя

В катушках припоя или паяльных пастах содержится один из перечисленных ниже типов материалов для нанесения флюса на металлические контакты при пайке:

Процессы пайки печатных плат

Сегодня при производстве печатных плат наиболее часто используется бессвинцовый (Sn-Cu) канифольный припой. Если только ваш специалист по сборке не работает с единичным образцом или вы не собираете свою собственную плату, пайка плат не будет производиться вручную. Вместо этого будет применяться автоматизированный процесс:

Автоматическая селективная пайка компонентов сквозного монтажа печатной платы.

Сначала флюс/паста наносится на металлические контакты на плате, чтобы снизить степень окисления и распределить поток расплавленного припоя, что позволяет повысить прочность готового паяного соединения на печатной плате. Большинство конструкторов, вероятно, полагают, что для деталей с бессвинцовыми выводами следует использовать бессвинцовую паяльную пасту, однако строгих правил на этот счет нет. По мнению группы экспертов по пайке, эти материалы нередко смешивают, но при этом следует учитывать, что механические свойства конечного сплава могут оказаться где-то между свойствами сплавов на основе свинца и без него.

Если вам необходимо подготовить производственную документацию для вашей платы, включая все необходимые этапы сборки, в соответствии с нормативными требованиями, воспользуйтесь полным набором функций проектирования и производства печатных плат в Altium Designer®. Сформировав файлы Gerber и другие файлы для изготовления, можно быстро создать сборочные чертежи и добавить аннотации для уточнения требований к сборке. С легкостью можно указать различные типы материалов для пайки печатных плат, которые могут потребоваться при создании следующей сборки.

Когда проектирование будет завершено, а данные готовы для передачи на производство, платформа Altium 365™ поможет наладить совместную работу и доступ к проектам. Мы лишь поверхностно рассмотрели некоторые возможности Altium Designer на Altium 365. Вы можете зайти на страницу продукта, чтобы посмотреть более подробное описание функций, или посетить один из Вебинаров по запросу.

Полупроводниками называют материалы (химические элементы или соединения), которые нельзя однозначно отнести к диэлектрикам. То есть к веществам, не проводящим (ну или почти) электрический ток, так и к металлам, через которые он достаточно хорошо проходит, а при некоторых условиях вообще не оказывающим сопротивления его протеканию.

Такие соединения, как сульфид свинца, применялись ещё в начале прошлого столетия как простейшие детекторы в примитивных радиоприёмниках. Однако подлинную революцию в электротехнике совершили такие элементы как германий (Ge), кремний (Si) и разнообразные соединения галлия (Ga), например, арсенид галлия (GaAs) позволившие электронике, достигшей предела развития электровакуумных радиокомпонентов (радиоламп), шагнуть на новую ступень и открыть миру широкие возможности полупроводниковой электроники.

Данная статья познакомит вас с историей возникновения полупроводников, описанием материалов для их получения, принципом их работы и многообразием.

Время чтения: 15 минут

Полупроводник? Это очень просто!

Открытие полупроводниковых материалов

Все материалы для полупроводников (ПП) обладают рядом небезынтересных особенностей, одна из которых – сильная зависимость их электрического сопротивления от облучения световым, ультрафиолетовым, инфракрасным рентгеновским или другими излучениями, а также от температуры. Но, в отличие от металлов, их сопротивление снижается при нагревании. Именно это свойство и было впервые замечено английским учёным Майклом Фарадеем в 1833 году при проведении экспериментов по прохождению тока через множество опытных материалов.

Некоторые из участвовавшие в его опытах образцов проявляли именно ту, необычную для металлов, электропроводимость при нагреве. Ими были сульфид серебра, фторид свинца, оксид сурьмы и некоторые соединения ртути. Именно они и представили собой первые ПП, но само название «полупроводник» появилось немного позже.

Лишь спустя десятилетия династией французских ученых-физиков Беккерель были выявлены и описаны другие свойства ПП-материалов: например, уменьшение электросопротивления под действием света. Во второй половине XIX века был обнаружен эффект выпрямления переменного тока при прохождении его через вещества с разной проводимостью, например, через медные и свинцовые проводники, между которыми располагался сульфат меди, обладающий ПП-свойствами.

Вскоре, в начале XX века был запатентован и стал частью телеграфной аппаратуры первый в мире кристаллический детектор на основе сульфида свинца. После всех этих открытий изучение полупроводников прекратилось почти полностью в связи с нестабильностью ПП-свойств открытых ранее материалов. Несовершенство технологий того времени, изобретение и бурное развитие ламповой электроники на несколько десятилетий поставили крест на подобном виде техники. Даже сама научная деятельность в этом направлении считалась неприемлемой. Перспектив ПП-приборов никто не видел.

Взрывное развитие такого типа электроники началось в середине XX века.

В 1947 году американскими учёными Уильямом Шокли, Джоном Бардиным и Уолтером Браттейном был изобретён первый в мире ПП-триод – им был германиевый биполярный транзистор, который будучи ещё крайне несовершенным, уже показал огромное преимущество перед электровакуумными лампами. Он мог усиливать и генерировать электрические колебания.

Параллельно с американскими учёными работы по его созданию велись в Европе и Советском Союзе. Спустя 10 лет после изобретения транзистора технология его изготовления достигла небывалых высот: учёным удалось повысить степень миниатюризации настолько, что несколько сотен или даже тысяч таких микрокомпонентов стало возможным разместить на крошечной пластинке из полупроводника. Так в конце 50-х – начале 60-х были разработаны первые в мире микросхемы на основе кремния.

Современные микросхемы, в числе которых центральные (CPU) и графические (GPU) процессоры в компьютерах содержат миллиарды транзисторов, демонстрируя огромную вычислительную мощность и крайне низкое энергопотребление. Но даже это не предел эволюции ПП-технологий, которая каждые несколько лет многократно превосходит сама себя.

Фундаментальные аспекты работы полупроводниковых электронных устройств

Основы и рабочие особенности ПП-приборов будем рассматривать на примере простейшего из них – полупроводникового диода:

Конструктивно он состоит из двух зон с отличающейся проводимостью: n- (negative) и p- (positive) областей .

Проводимость n-области электронная – носители электрического заряда отрицательно заряженные электроны. Проводимость p-области дырочная – здесь носители электрозаряда дырки – атомы полупроводника, у которых отсутствует один электрон, имеющие такие образом положительный заряд. Место, где соприкасаются области p- и n-типа, называется p-n-переходом.

Обе области делают из ПП-материала (кремния, германия и других), а различная проводимость задаётся дополнительными примесями в составе (легированием):

Фосфор (P), Мышьяк (As), Сурьма (Sb), реже медь (Cu), Золото (Au) Бор (B), Индий (In), Галлий (Ga), Алюминий (Al)

Высокочистый ПП, лишенный примесей в составе, называется собственным полупроводником. Его электропроводимость невысока, ввиду одинакового количества носителей отрицательного (электронов) и положительного (дырок) заряда. Чтобы придать ему конкретный и ярко выраженный тип проводимости, его легируют донорами или акцепторами. Легированный полупроводник называется несобственным или примесным.

Место соприкосновения областей p- и n-типа называется p-n-переходом. Электрические процессы в p-n-переходе – основа работы множества полупроводников, включая диоды, биполярные транзисторы и прочие.

На p-n-переходе свободные электроны из богатой ими n-области переходят в p-область, где имеется недостаток электронов, а дырки из богатой ими p-области переходят в n-область. Этот процесс называется диффузией.

В тонком слое между областями с различной проводимостью образуется тонкий слой, имеющий запирающее электрическое поле E, отталкивающее от себя электроны в n-области и дырки в p-области. При подведении прямого напряжения (положительного потенциала к аноду и отрицательного к катоду), создающим внешнее электрополе E′, ширина запирающего внутреннего поля E уменьшится, и у носителей заряда появится возможность начать движение – в диоде возникнет электроток. При подведении обратного напряжения (когда «минус» подаётся на анод, а «плюс» – на катод) ширина внутреннего запирающего электрополя E, наоборот, увеличится, и проходящий ток практически будет отсутствовать (до момента электрического пробоя при превышении предельного обратного напряжения, после чего начнёт увеличиваться лавинообразно). Именно так и реализуется односторонняя проводимость диода и его выпрямительные свойства.

Вариативность полупроводниковых материалов

Здесь будут рассмотрены основные практически используемые в массовой электронике виды ПП-материалов и дано их сравнительное описание. Их архаичные представители, такие как закись меди, сульфат свинца, а также перспективные, но не использующие на практике, допустим, графен, рассматриваться не будут.

До 1970-х годов его применяли повсеместно для изготовления диодов и транзисторов. Для выпуска микросхем используется крайне ограниченно и, как правило, совместно с кремнием.

Германий имеет некоторые преимущества перед кремнием. Так, способность реагировать на внешнее электрическое поле, то есть коэффициент подвижности носителей заряда электронов и дырок в германии выше, чем в кремнии, приблизительно в три раза. Падение напряжение на p-n-переходе германиевого диода или транзистора составляет около 0.1÷0.3 вольта, тогда как в случае кремниевых элементов этот показатель равен 0.6÷0.7 вольт.

Основными минусами германия стали его относительная редкость и высокая стоимость, но, что главное, низкая теплопроводность, препятствующая эффективному отводу тепла от кристалла германиевого ПП-прибора и серьёзное ухудшение его параметров с ростом температуры. Сейчас он используется только для изготовления некоторых электронных приборов, работающих на сверхвысоких частотах, а также специальной оптики, стёкол и линз.

Третий по объёму применения полупроводник. Изначально на его основе производили ПП-оптические приборы: светодиоды и твердотельные лазеры, но позже из него также стали изготавливать диоды, транзисторы и микросхемы. Электроника на основе арсенида галлия может работать на частотах до нескольких сотен гигагерц, имеет лучшую радиационную стойкость, чем её разновидности из кремния, что делает его незаменимыми в аэрокосмической отрасли.

Он имеет отличную теплопроводность, превышающую аналогичную характеристику кремния в несколько раз, высокую максимальную рабочую температуру (порядка 600 градусов по Цельсию), а также высокую электрическую прочность. В совокупности это делает его востребованным при выпуске электронных приборов ограничения перенапряжения, варисторов, разрядников, тиристоров и иных коммутационных устройств, а также для высоковольтных диодов.

Применяется и для изготовления светодиодов некоторых цветов свечения, а сам эффект светоизлучения кристаллом карбида кремния был открыт ещё на заре полупроводниковой техники – в начале XX столетия.

ПП-свойства этого элемента, так же как и карбида кремния, открыли в начале XX века. Именно многократно большая светимость кристалла карбида кремния поставила крест на развитии оптических приборов на основе «несовершенного» нитрида галлия. Но в конце века учёные вновь обратили на него внимание, и на его основе удалось разработать довольно много ПП-компонентов, преимущественно мощных и высокочастотных полевых транзисторов. Также на его основе производят солнечные батареи. Современные технологии легирования позволили нитриду галлия стать недорогим и эффективным материалом для производства синих и УФ-светодиодов.

Основные ПП-приборы

В этом разделе будут описаны некоторые основные ПП-приборы, показаны их условные графические изображения и описано назначение.

Это простейший двухэлектродный полупроводник. Он предназначен для выпрямления переменного тока промышленной частоты в сетевых блоках питания, для детектирования высокочастотного переменного тока в радиоприёмной аппаратуре, а также устанавливается в цепях защиты и гашения ЭДС самоиндукции нагрузок с большой индуктивностью (электродвигатели, электромагниты, электромагнитные реле и т. п.)

Стабилитрон — разновидность диода

Это разновидность диода предназначена для стабилизации напряжения. Принцип работы очень прост. Режим электрического пробоя, возникающего, когда превышается предельное обратное напряжение, для диода является недопустимым режимом работы. Однако относительно стабилитрона – самым что ни на есть рабочим: стабилитроны изготавливаются с чётко заданным напряжением пробоя при обратном включении, которое с высокой степенью стабильности поддерживается этим прибором при широком диапазоне обратного тока. Применяется он в цепях стабилизации напряжения различных источников питания.

Светодиод, в зависимости от применяемого полупроводника и примесей в его составе, может испускать свет как видимого спектра, так и более длинноволнового ИК-излучения, или высокочастотного УФ-излучения.

ИК-светодиоды применяются в системах дистанционного управления, ночного видения; светодиоды видимого спектра используются в составе различных индикаторов и дисплеев; УФ-светодиоды находят применение в медицине и промышленности. Особый тип светоизлучающего диода – лазерный – применяется в оптоволоконных линиях связи в качестве управляемого источника световых импульсов, а также в устройствах чтения и записи компакт-дисков.

Тип ПП-диода — варикап

Он тоже относится к одному из типов ПП-диодов. Принцип его работы основан на изменении электрической ёмкости p-n-перехода в зависимости от приложенного обратного напряжения. Служит конденсатором переменной ёмкости в различных частотозадающих цепях.

Биполярные и полевые транзисторы

Это трёхэлектродный полупроводник, который усиливает, генерирует и коммутирует электросигналы. В зависимости от структурных и эксплуатационных особенностей существует два типа транзисторных устройств:

Существует также гидрид обоих типов устройств. Это биполярный транзистор с изолированным затвором – IGBT-транзистор.

Q1 – биполярный транзистор структуры n-p-n; Q2 – биполярный транзистор структуры p-n-p; Q3 – полевой транзистор с каналом p-типа; Q4 – полевой транзистор с каналом n-типа.

Это полупроводниковый элемент с тремя или более p-n-переходами, находящийся в двух устойчивых состояниях: открыт (включен) или закрыт (выключен).

Подача небольшого напряжения на управляющий электрод (УЭ) открывает его. Если напряжение между анодом (А) и катодом (К) будет выше определённого напряжения удержания, то тиристор останется открытым, даже если прекратить подачу управляющего питания. Следовательно, для его закрытия оно должно оказаться ниже напряжения удержания. Устройство пропускает ток только в одном направлении. То есть в случае с переменным током тиристор каждый раз будет закрываться при отрицательной полуволне. Его разновидность, пропускающая ток в обоих направлениях, называется симистором:

А тиристор, не имеющий УЭ, и который открывается при достижении определенного напряжения между анодом и катодом, называется динистором:

Тиристор, симистор и динистор применяются в силовой электронике в качестве мощных бесконтактных коммутационных приборов.

Это полупроводниковый прибор, сопротивление которого нелинейно зависит от приложенного напряжения: оно скачкообразно падает до незначительных величин при достижении определенного порога. Применяется в цепях защиты от перенапряжения.

Это ещё один полупроводниковый прибор без p-n-переходов, изменяющий своё сопротивление при воздействии на него света. Увеличение интенсивности воздействующего светового потока приводит к его снижению. Применим фоторезистор в качестве разных датчиков.

Кроме него, существуют фотоэлектронные виды буквально всех приборов: фотодиоды, фототранзисторы, фототиристоры и другие.

Безо всяких сомнений, полупроводники — основа современной электроники, и останутся таковыми по крайней мере еще многие столетия.

Полупроводниковые приборы вытеснили электронные лампы и другие классические радиокомпоненты почти из всех видов техники. Но, самое главное, развитие ПП-микроэлектроники дало нам микросхемы – устройства, содержащие внутри себя сотни, тысячи, миллионы сверхминиатюрных транзисторов, диодов, резисторов, конденсаторов. Именно ПП-микросхемы сделали наш мир таким, каким мы его знаем. Без этих «кусочков кремния» мы бы так и не смогли иметь ни персональный компьютер, ни мобильный телефон, ни все те достижения науки и техники, которые так привычны для нас.

Оцените статью
Про пайку
Добавить комментарий