- Достоинства (основные преимущества) и недостатки сварки под флюсом
- Что такое автоматическая сварка
- Виды флюсов для сварки стали и что это такое в металлообработке
- Виды флюсов для сварки по назначению
- Назначение сварочного флюса — примеры
- Общие требования к флюсу
- Особенности технологии
- Особенности тракторного оборудования
- Преимущества и недостатки
- Режимы
- Сочетания флюс-проволока при сварке под флюсом
- Сущность сварочного процесса
- Технология выполнения работ
- Химический состав флюсов для сварки
- Электродная проволока: марки, обозначение, поставка
Достоинства (основные преимущества) и недостатки сварки под флюсом
Плюсы:
- Глубокий провар без прожогов – добиться его можно при увеличении силы тока.
- Возможность сварив
- ать металл с большой толщиной без предварительной разделки кромок.
- Однородный состав шва, его высокая эстетичность и прочность.
- Отсутствие дефектов в виде неравномерных проходов, полостей.
- Нет разбрызгивания расплавленного материала, потому что процесс нагрева происходит под сыпучим веществом.
- Сварщики отмечают экономию на электричестве и расходные детали – до 40%.
- Мало вредных газов, в результате – упрощенная техника безопасности при сварке под флюсом.
- Минимальное выделение токсичных веществ – можно работать без средств индивидуальной защиты для дыхательных путей.
Минусы:
- Текучесть ограничивает возможности соединения, поскольку процедуру необходимо проводить только в нижнем горизонтальном положении, иначе можно добиться подтеков и плохой глубины проваривания. И сложно себе представить нанесение порошка на металлические конструкции на потолке.
- Практически не годится для стыковки труб, которые в сечении не превышают 15 см.
- Специальная подготовка и навыки как на подготовительном этапе, так и при сваривании.
Что такое автоматическая сварка
Автоматическая сварка под флюсом осуществляется с использованием полного контроля всех важных процессов. Именно благодаря этому она получило широкое распространение на производствах, разных предприятиях, на которых выполняется массовое изготовление разнообразных конструкций из металла. Это позволяет за небольшой период времени создать огромные изделия особой важности.
Так что это такое сварка под флюсом? По своей сути это процесс, во время которого осуществляется сочетание электромеханического оборудование с электронным управлением, при этом главной деталью является сварочная головка. С ее помощью осуществляются многие важные процессы:
- подаются расходные материалы в область соединения;
- осуществляется дуговая сварка;
- резка;
- напыление;
- производится контроль над сварочным процессом и своевременностью его остановки.
На заметку! По конструкции головки для сварки разделяют на два типа — подвесные и самоходные. Отличие первых состоит в том, что в них отсутствует устройство для самоходного перемещения. По этой причине движение дуги осуществляется за счет передвижения соединяемых элементов.
Из всего этого можно понять, что такое дуговая сварка под флюсом и как она производится, но все же стоит знать ее отличие от полуавтоматического процесса. Разница между этими технологиями не особо существенная. Автомат от полуавтомата различается по степени механизации процесса.
Полуавтоматические устройства в отличие от автоматов обладают простым использованием. Они оборудованы автоматическим устройством подачи сварочной проволоки на электронный держатель через гибкий рукав. Сварщик самостоятельно регулирует движение дуги, он направляет ее в требуемую сторону.
Виды флюсов для сварки стали и что это такое в металлообработке
Первое и главное различие – по применению. В зависимости от того, с каким материалом вы планируете работать, следует подобрать уникальный состав. Он может быть предназначен для составов с разным количеством углерода или с легирующими добавками, а также для разного типа цветного металла.
Также можно классифицировать:
- По компонентам – плавленный или керамический. Первый используется чаще, он отличается доступной стоимостью, универсальностью и хорошей защитой от кислорода. В то время как второй, более узконаправленный, а также профессиональный, позволяет добиться максимального качества, прочности и красоты шва.
- По уровню химической активности – активные и пассивные. Одни имеют в составе кислоты, и они могут негативно воздействовать на материал, если после сваривания их не счистить. А другие – недостаточно хороши для автоматической механизированной сварки под флюсом, но применяются при ручной дуговой. Они выглядят как паста или канифоль.
- По производителю. Одни сварщики предпочитают дешевое отечественное вещество, утверждая, что по уровню оно не уступает импортным. А вторые выбирают только заграничную продукцию. Отметим, что оба компонента могут показать свои защитные свойства исключительно при выполнении технологии.
- По консистенции: порошки, пасты, гранулы.
- По химическим добавкам: солевые (с фторидами и хлоридами, подходят для активных металлических сплавов), смешанные (для легированных сталей), оксидные (с окислами металлов и фтористыми составами).
марка флюса | сталь | марка проволоки | где применяется |
ан-348а | ст1, ст2, ст3 | св-08, св-08а | автоматическая и полуавтоматическая сварка для всех соединений |
ан-10 | для конструкционных стальных сплавов | ||
ан-8 | х18н9т | св-0х18н9, св-0х18н9с2 и др | электрошлаковый способ |
ан-60 | ст1, ст3, 15м | св-08, св-08а | двухдуговая, на большой скорости, для труб |
ан-42, ан-43, ан-47 | углеродистые низко- и среднелегированные высокой и повышенной прочности | дуговая | |
ан-22 | высоколегированные аустенитного класса | соответствующая | |
осц-45 | ст1, ст2, ст3, ст4 | св-08, св-08а, св-15 | автоматическая для всех соединений. исключаются кольцевые швы малого диаметра |
фц-9 | св-08, св-08а | шлаковая полуавтоматическая | |
фц-19 | высокохромистые | соответствующая | дуговая |
фц-7 | низкоуглеродистые | св-08, св-08а | аналогично, но на большом токе |
48-оф-6, 48-оф-10 | высоколегированные аустенитные | соответствующая | дуговая и электрошлаковая |
Виды флюсов для сварки по назначению
От назначения сварочных флюсов напрямую зависит их выбор по химическому составу.
- Для сварки низкоуглеродистых сталей применяются флюсы с большим содержанием кремния и марганца в сочетании с проволокой из низкоуглеродистой стали без легирующих добавок. Второй вариант — малая доля марганца (или вообще его отсутствие) во флюсе, но легирующие добавки присутствуют в стали сварочного прутка.
- Для сварки низколегированных сталей используются флюсы с высокой химической инертностью, — выше, чем для низкоуглеродистых сталей. Благодаря этому получают более пластичный сварной шов. Пример — флюс для сварки стали АН-46.
- Для сварки высоколегированных металлов применяются флюсы с минимальной химической активностью. Кремний, как и марганец, практически не используется — его заменяет флюорит (плавиковый шпат), благодаря которому образуются легко отделяемые легкоплавкие шлаки. Также в таких флюсах обычно содержатся оксид алюминия, негашеная известь.
- Для сварки активных металлов (таких, как титан) используют солевые флюсы — как правило, это хлоридные и фторидные соли щелочных металлов. Примесь кислорода в них полностью отсутствует, поскольку она снижает пластичность шва.
Назначение сварочного флюса — примеры
Плавленые флюсы | Неплавленые флюсы | ||
АН-348-А, АН-348-АМ, АН-348-В, АН-348-ВМ, ОСЦ-45, ОСЦ-45М, АН-60, ФЦ-9 | Механическая сварка и наплавка низколегированных и углеродистых сталей низколегированной и углеродистой сварочной проволокой | АНК-35 | Сварка низкоуглеродистых сталей низкоуглеродистой проволокой Св-08 и Св-08А |
АН-8 | Электрошлаковая сварка углеродистых и низколегированных сталей; сварка низколегированных сталей углеродистой и низколегированной сварочной проволокой. | АНК-46 | Сварка низкоуглеродистых и низколегированных сталей |
АН-15М, АН-18, АН-20С, АН-20П, АН-20СМ | Дуговая автоматическая сварка и наплавка высоко- и среднелегированных сталей | АНК-30, АНК-47 | Сварка швов высокой хладостойкости |
АН-22 | Электрошлаковая сварка и дуговая автоматическая наплавка и сварка низко- и среднелегированных сталей | АНК-45 | Сварка высоколегированных сталей |
АН-26С, АН-26П, АН-26СП | Автоматическая и полуавтоматическая сварка нержавеющих, коррозионностойких и жаропрочных сталей | АНК-40, АНК-18, АНК-19 | Наплавка низкоуглеродистой сварочной проволокой Св-08 и Св-08А; |
АН-17М, АН-43 и АН-47 | Дуговая сварка и наплавка углеродистых, низко- и среднелегированных сталей высокой и повышенной прочности | АНК-3 | В качестве добавки к флюсам марок АН-348А, ОСЦ-45, АН-60 для повышения стойкости швов к образованию пор |
Общие требования к флюсу
Флюсы для механизированной сварки должны обеспечивать устойчивое протекание процесса сварки, отсутствие кристаллизационных трещин и пор в металле шва, требуемые механические свойства металла шва и сварного соединения в целом, хорошее формирование шва, легкую отделимость шлаковой корки, минимальное выделение токсичных газов при сварке, а также иметь низкую стоимость и возможность массового промышленного изготовления.
В соответствии с EN 760 сварочные флюсы классифицируют по химическому составу как показано в таблице ниже.
Классификация (типы) флюсов по химическому составу
Символ | Основные компоненты | Тип флюса | Индекс основности |
---|---|---|---|
MS | MnO SiO2 > 60%; CaO 15%; ZrO2 | Марганец-силикатный | 0,8 |
CS | CaO MgO SiO2 > 60%; CaO > 15% | Кальций-силикатный | 0,7-1,2 |
AR | Al2O3 TiO2 > 45% | Алюминатно-рутиловый | 0,7-1,4 |
AB | Al2O3 CaO MgO CaF2 > 55%; Al2O3 > 20%; CaF2 (общее содержание фтора) 20% | Алюминатно-основной | 1,0-2,0 |
FB | CaO MgO MnO CaF2 > 50%; SiO 2 20%; CaF2 (общее содержание фтора) > 15% | Флюоритно-основной | > 2,0 |
W | Флюсы, состав которых не попадает ни под один из указанных типов | Прочие |
Особенности технологии
Чтобы понять, как производится автоматический сварочный процесс, стоит рассмотреть его важные особенности:
- Флюс автоматически подается на область соединяемых элементов из предварительно заполненного бункера. При этом высота слоя зависит от толщины металлической основы.
- Электродная проволока, которая используется для автоматической сварочной технологии, сматывается в бухты или на кассеты. Она подается в рабочую зону при помощи специального механизма.
- Электрод, который создает дугу, перемещается вдоль шва со скоростью, зависящей от видов используемых режимов.
- При сварочном процессе на поверхности образуется флюсовый свод, он защищает сварочную ванну и предотвращает разбрызгивание металла.
- Расплавленный флюс не оказывает негативного воздействие на качество сварочного шва, поскольку он имеет низкую плотность, поэтому он всплывает на поверхность. При остывании на поверхности образуется шлак, который обязательно требуется полностью счистить с поверхности изделия.
- Флюс, который не был израсходован, необходимо собрать в емкость. Его можно будет использовать повторно.
Автоматическая технология сваривания считается одной из лучших техник, которые активно применяются в разных областях промышленности. Но чтобы она было проведена правильно, требуется учитывать множество важных нюансов — виды флюсов, типы автоматического оборудования, расчет режимов наплавки под слоем флюса, принцип работы и многое другое. Поэтому перед тем как приступать к данному процессу стоит заранее рассмотреть его важные особенности.
Особенности тракторного оборудования
Часто механизированная сварка под флюсом осуществляется при помощи оборудования тракторного типа — автоматические сварочные тракторы. Первый вид данных аппаратов был разработан и выпущен еще в СССР. Требования к конструкции регламентированы ГОСТом 8213-69. Широко применяются в тяжелой промышленности.
Чтобы понять, что это за оборудование, стоит рассмотреть в качестве примера популярный аппарат — устройство одномоторного трактора типа ТС-17-Р. Именно при помощи этого оборудования часто производится автоматическая и полуавтоматическая сварка под флюсом.
Итак, этот аппарат имеет в устройстве только один двигатель, именно это становится понятно, исходя из названия оборудования. Он специально разработан для проведения наплавки под слоем флюса при проведении сварочных работ различных стыковых швов. Во время этого процесса минимальный радиус кольцевых швов должен составлять 60 см.
https://www.youtube.com/watch?v=T9oPEN8Hlvg
При помощи двигателя приводится в движение ходовой механизм, а также устройство подачи присадочной проволоки (электрода). Все три компонента имеют общую корпусную основу, которая является несущей конструкцией трактора.
Также корпус обеспечивает опору для других важных компонентов тракторного аппарата:
- разгрузочному бункеру для флюса;
- барабану с проволокой;
- управляющему блоку.
Электрод находится рядом с вертикальной осью, которая проходит через центр тяжести. Именно это особенность позволяет производить сварочные работы внутри емкостей — низкое расположение центра тяжести обеспечивает высокую устойчивость.
Преимущества и недостатки
У самого процесса сварки под флюсом есть свои положительные и отрицательные черты. Среди преимуществ:
- Автоматизация, позволяющая добиваться наиболее точных сварных швов. Автоматика позволяет задать все параметры электронно, поэтому ток, проволока — все подается и управляется само.
- Выделение флюса продолжается в процессе всего создания шва, потому его эффективность оказывается выше.
- Можно варить с большой силой тока.
- Скорость варки настраивается, может быть очень высокой.
- Сварную ванну можно увеличивать.
- Шов получается качественным.
- Возможность собирать элементы сложных конструкций быстро, качественно и с небольшими усилиями.
- Безопасность для сварщиков, так как они не находятся поблизости к свариваемым деталям.
- Можно использовать одновременно 2 электрода, питаемых от одного источника тока.
В числе недостатков:
- Сложность настройки оборудования.
- Варить в вертикальном, а также потолочном положениях невозможно.
- Неровности на свариваемой детали не позволят сделать шов.
Также здесь невозможно контролировать процесс варки, так как весь шов покрыт слоем флюса.
Этого можно избежать только если установить дополнительные системы контроля появления повреждений.
Режимы
Чтобы проведение автоматической сварки под флюсом было правильным и точным, необходимо знать какие бывают режимы сварки, и какими особенностями они обладают. При их выборе стоит учитывать множество факторов, соблюдение которых позволит получить качественное сварное соединение.
Итак, режимы сварки под флюсом подбираются в соответствии со следующими факторами:
- показателями толщины сварочных кромок;
- размерами будущего сварного соединения;
- геометрической формой соединения;
- глубиной плавления металла в сварной области.
Чтобы правильно подобрать режимы автоматической сварки под флюсом стоит рассмотреть таблицу ниже, которая предоставлена на изображении ниже.
Данная таблица поможет выполнить правильный расчет режимов сварки под флюсом с учетом всех важных характеристики и качеств. В результате это обеспечит правильное проведение процесса, который сможет соединить металлические изделия и создать прочную конструкцию.
Для каждого вида изделия режимы сварки должны указываться в техническом задании и в правилах сварки автоматом под флюсом. При этом нужно следовать некоторым важным рекомендациям:
- Автоматическая дуговая или ручная сварка под флюсом может проводиться при условии, если стабильно поддерживается дуга. При этом должно наблюдаться оптимальное соотношение между силой тока и скоростью подачи проволоки.
- Схема автоматической дуговой сварки под флюсом рекомендует выполнять повышение скоростных показателей выполнения работ при увеличении вылета электродной проволоки.
- Если используются проволоки из легированной основы, то стоит использовать режимы с высокой скоростью подачи.
- На размеры и формы сварного соединения оказывает влияние показатель напряжения и сила тока. Сила тока, при которой производится автоматический дуговой сварочный процесс, изменяет глубину проваривания, а увеличение напряжения вызывает изменение ширины шва.
Все эти факторы помогут провести правильный выбор и расчет режимов автоматической сварки под флюсом. Кроме этого стоит учитывать правила, которые указываются в регламентирующей технологии этой сварочной технологии.
Сочетания флюс-проволока при сварке под флюсом
Если сварочно-технологические характеристики процесса сварки под флюсом определяются в основном свойствами флюса, то механические свойства металла швов и сварных соединений зависят от сочетаний «флюс-проволока».
Получение качественных швов на углеродистых и некоторых низколегированных конструкционных сталях обеспечивается путем использования следующих сочетаний флюсов и сварочных проволок: плавленый высококремнистый марганцевый флюс и низкоуглеродистая или марганцовистая сварочная проволока, плавленый высококремнистый безмарганцевый флюс и марганцовистая сварочная проволока, керамический флюс и низкоуглеродистая или марганцовистая проволока.
При использовании плавленого высококремнистого марганцевого флюса и низкоуглеродистой или марганцовистой сварочной проволоки либо плавленого высококремнистого безмарганцевого флюса и марганцовистой сварочной проволоки последняя должна быть из кипящей или полуспокойной стали.
Успокоение металла сварочной ванны и предупреждение пористости при сварке кипящей стали осуществляется в результате введения некоторого количества кремния из флюса в зону сварки. Легирование металла шва марганцем с целью повышения его стойкости против образования кристаллизационных трещин производится через флюс (первое и третье сочетания) или через проволоку (второе и третье сочетания).
Сварочные свойства высококремнистых марганцевых флюсов несколько лучше, чем свойства высококремнистых безмарганцевых. Положительной характеристикой высококремнистых марганцевых флюсов является высокая стойкость сварных швов против образования кристаллизационных трещин.
Это обусловливается малым переходом серы из флюсов данного типа в металл шва и сравнительно сильным выгоранием углерода из металла сварочной ванны. Кроме того, на качество шва положительно влияет более низкое по сравнению с марганцовистой проволокой содержание углерода в низкоуглеродистой проволоке, используемой в сочетании с высококремнистыми марганцевыми флюсами. При сварке под ними пористость сварных швов меньше, чем при сварке под высококремнистыми безмарганцевыми флюсами.
Если прочность и химический состав металла шва определяются химическими составами сварочной проволоки и основного металла, то его ударная вязкость в значительной степени зависит от флюса. Высокая ударная вязкость металла шва обеспечивается при его мелкокристаллической структуре, низком содержании неизбежных вредных примесей и неметаллических включений.
Для выполнения этих требований во флюсе обычно снижают содержание SiO2. Поэтому при сварке низколегированных сталей преимущественно применяются низкокремнистые флюсы. Дополнительным требованием является возможно более низкое содержание водорода в металле шва.
В процессе сварки современных низколегированных сталей повышенной прочности допускается лишь ограниченный подвод тепла для исключения повреждения структуры основного металла в околошовной зоне. Это требование обеспечивается путем наложения многослойных швов при сварке металла средней и большой толщины.
В связи с этим флюсы, предназначенные для сварки таких сталей, должны обеспечивать легкую отделимость шлаковой корки, высокие качество формирования шва и его механические свойства. В результате повышения механических свойств металла шва путем применения соответствующего сочетания флюса и проволоки исключается необходимость наложения неэкономичных тонких швов при многопроходной сварке толстого металла.
Реакции шлак-металл и газ-металл, восстановление и выгорание элементов
Во время сварки плавлением происходит взаимодействие между жидкими шлаком и металлом. Длительность этого взаимодействия обычно очень невелика. При электродуговой сварке она колеблется от 10 с до 1 мин. Взаимодействие прекращается после затвердевания металла и шлака.
Несмотря на кратковременность, реакции взаимодействия между шлаком и металлом при электродуговой сварке могут проходить очень энергично, что обусловливается высокой температурой нагревания металла и шлака, большими поверхностями их контактирования и сравнительно большим относительным количеством шлака.
Взаимодействие между шлаком и металлом описывается реакциями вытеснения из шлака в металл одного элемента другим или распределения между шлаком и металлом. Реакции вытеснения преимущественно ведут к обогащению или обеднению металла шва легирующими элементами, реакции распределения — к образованию в металле шва неметаллических включений.
В процессе реакций вытеснения на поверхностях контактирования жидких металла и шлака взаимодействуют атомы металла и молекулы окислов шлака. Весьма существенную роль при этом играют реакции восстановления кремния и марганца:
(МnО) [Fe] = (FeO) [Mn]; (SiO2) 2 [Fe] = 2 (FeO) [Si].
Символы в круглых скобках обозначают элементы и соединения, находящиеся в шлаке, в квадратных — в металле. При высоких температурах реакции преимущественно идут слева направо (восстановление марганца и кремния из шлака в металл), при снижении температуры — справа налево (окисление марганца и кремния и переход их из металла в шлак).
Направление реакций зависит также от концентрации реагирующих веществ. Если в металле сварочной ванны содержится мало марганца и кремния, а в шлаке много МпО и SiO2 и мало FeO, марганец и кремний при высоких температурах (вблизи дуги) восстанавливаются из шлака в металл.
Реакции взаимодействия между шлаком и металлом сварочной ванны проходят в условиях быстрого изменения температуры и постоянного обновления состава реагирующих фаз. В связи с этим изменяются как интенсивность прохождения этих реакций, так и их направление.
Интенсивность взаимодействия шлака и металла зависит от режима сварки, причем, наиболее сильно на нее влияют сила тока и напряжение дуги; плотность тока и скорость сварки оказывают малое влияние. Уменьшение силы тока и увеличение напряжения дуги усиливают взаимодействие шлака и металла, увеличивают интенсивность восстановления или окисления кремния и марганца при сварке, усиливают переход серы и фосфора из шлака в металл или из металла в шлак.
При автоматической сварке под флюсом заданный режим поддерживается постоянным, в единицу времени плавятся определенные количества электродного и основного металлов, одинаково проходят процессы взаимодействия металлической, шлаковой и газовой фаз при высоких температурах.
Благодаря постоянству режима автоматической сварки получается шов стабильного химического состава. Если известны химический состав основного металла и сварочной или присадочной проволоки, а также характер изменения химического состава металла сварочной ванны в результате взаимодействия со шлаковой или газовой фазой, то можно заранее приблизительно рассчитать химический состав шва, который получится при сварке на выбранном режиме.
Сущность сварочного процесса
Перед тем как приступать к работам стоит рассмотреть сущность автоматической сварки под флюсом. В международной системе эта технология имеет обозначение SAW. В ее основе лежит горение электрической дуги, которая расплавляет структуру металлических кромок. Для этого в область сварки подается проволока, между концом которой и самим изделием происходит возбуждение дуги.
Совместно с этим процессом сварочный трактор в область сваривания передает флюс, он покрывает расплавленную область, защищая от влияния внешних газовых смесей. Кроме этого он положительно влияет на вплавляемость легирующих компонентов в область шва, снижает разбрызгивание расплавленного металла.
Из истории! Кто разработал сварку под флюсом? Эту технологию разработал Н. Славянов. А вот первый автоматизированный сварочный аппарат для осуществления сварочного процесса в автоматическом режиме и практические основы выполнения были созданы уже в 1927 году Д. Дульчевским.
Автоматическая дуговая сварка под флюсом должна выполняться в соответствии с технологией и с соблюдением определенных правил. Во время этого процесса плавящийся конец присадочной проволоки удерживает головка сварочного автомата, при этом обязательно должно сохраняться некоторое расстояние от детали.
Технология сварки под флюсом требует контролирования со стороны человека. Также необходимо корректирование режимов, периодическое оценивание качества полученных результатов. Во время сварочного процесса применяются автоматические тракторы, которые передвигаются на собственных шасси по линии соединения. Все главные узлы данных аппаратов передвигаются вместе с ними.
В соответствии с ГОСТом 8713-79 сварочный станок, который используется при автоматическом сварочном процессе, может производить следующие разновидности работ:
- Сваривание металлических заготовок на весу, без поддерживания для обратной стороны шва.
- Они могут выполнять сварку на специальных медных прокладках, которые защищают от протекания и наплывания.
- Могут осуществлять сварку на подушке из порошка.
- Способны производить сварочный процесс на медном ползуне, сопровождающем движение головки аппарата.
Технология выполнения работ
Чтобы понять, что такое сварка под флюсом стоит рассмотреть технологию ее проведения. Первым делом стоит подготовить сварочное оборудование, для этого вида сварки подходят разные автоматические аппараты — трактор и подвесной сварочный прибор.
Главным элементом конструкции автоматического аппарата является сварочная головка, которая состоит из следующих компонентов:
- устройства подачи и перемещения;
- токопроводные элементы;
- самодвижущаяся тележка;
- блок управления.
Для работы потребуется специальный флюс и проволока для сварки под флюсом или прочие электродные материалы. Ее подает сварочная головка, а уже после она осуществляет подачу электрического тока.
Обязательно для этого вида сварки требуется токопроводящий механизм, который называется горелкой или мундштуком. Встречаются разные варианты исполнения, но все они имеют общее принципиальное устройство — направляющую трубку с вкрученным токопроводящим элементом.
Трубка при помощи сапожковой вилки на шарнире соединяется с прижимным механизмом. Для увеличения срока службы вилка имеет вставку из высокопрочной основы. Прижимной механизм состоит из винта и пружины.
Для автоматической импульсной сварки под слоем флюса рекомендуется применять источники энергии с пологопадающими качествами. Если выполняются работы в газовой среде, то предпочтение стоит отдавать источникам с жесткими характеристиками.
Стоит отметить! При проведении орбитальных сварочных работ рекомендуется применять оборудование с асинхронными двигателями с постоянной частотой. За счет того, что реализуется принцип саморегуляции, скорость подачи электродов будет оставаться неизменной.
Химический состав флюсов для сварки
Химический состав — важная составляющая в характеристике флюсов. Материал должен быть химически инертен в условиях очень высоких температур. Помимо этого, он должен обеспечивать эффективную диффузию отдельных элементов (например, легирующих) в металл шва.
Наибольшую массовую долю (от 35…80% от общего объема) в сварочном флюсе обычно (но не во всех) составляет диоксид кремния (кремнезём) — кислотный оксид, бесцветный прозрачный кристаллический минерал. Кремний препятствует процессу образования углерода, тем самым снижая риски появления трещин и пор в металле шва.
Значительную часть составляет марганец. Как активный раскислитель, этот компонент флюсов для сварки снижает образование окислов в зоне сварочной ванны, вступая в реакцию вначале с кислородом в окислах железа, затем и с оксидом кремния.
Также в ряду химических элементов флюсов — легирующие добавки — помимо кремния и марганца это молибден, хром, титан, вольфрам, ванадий и другие. Из задача — восстановить первичный химический состав металла, а в ряде случаев — путем легирования восполнить собой выгоревшие основные примеси стали и обеспечить металлу шва дополнительные специальные свойства. Обычно во флюсе они представлены соединениями с железом — ферросплавами (феррохром и т. д.).
Электродная проволока: марки, обозначение, поставка
Химический состав электродной проволоки определяет состав
и, следовательно, его механические свойства.
Стальная сварочная проволока, изготавливаемая по ГОСТ 2246-70, который предусматривает 77 марок проволоки.
В условные обозначения марок проволоки входит индекс Св (сварочная) и следующие за ним цифры и буквы. Цифры после индекса Св указывают среднее содержание углерода в сотых долях процента.
Так же, как и в марках стали, легирующие элементы в марках проволоки обозначаются буквами:
Цифры, следующие за буквенными обозначениями химических элементов, указывают среднее содержание элемента в процентах. Если содержание легирующего элемента менее 1%, то ставится только соответствующая буква.
Буква А в конце условных обозначений марок низкоуглеродистой и легированной проволок указывает на повышенную чистоту металла по содержанию серы и фосфора. В проволоке марки СВ-08АА содержится не более 0,020% серы и не более 0,020% фосфора.
В условном обозначении сварочной проволоки перед индексом Св указывается цифра, обозначающая диаметр проволоки в мм, а после условного обозначения — номер ГОСТа.
Например: сварочная проволока диаметром 3 мм марки Св-08А, предназначенная для сварки (наплавки), с неомедненной поверхностью условно обозначается таким образом: проволока 3 Св-08А ГОСТ 2246-70.
Если проволока поставляется с омедненной поверхностью, то после марки проволоки ставится буква О.
Буква Э обозначает, что проволока предназначена для изготовления электродов.
Буквы Ш, ВД или ВИ обозначают, что проволока изготовлена из стали, выплавленной электрошлаковым или вакуумнодуговым переплавом, или переплавом в вакуумно-индукционных печах.
Сварочные проволоки делятся на:
Проволока поставляется в бухтах массой до 80 кг. На каждой бухте крепят металлическую бирку с указанием завода-изготовителя, условного обозначения проволоки, номера партии и клейма технического контроля. По соглашению сторон проволоку могут поставлять намотанной на катушки или кассеты.
Транспортировать и хранить проволоку следует в условиях, исключающих ее ржавление, загрязнение и механическое повреждение. Если же поверхность проволоки загрязнена или покрыта ржавчиной, то перед употреблением ее необходимо очистить. Проволоку очищают при намотке ее на кассеты в специальных станках, используя наждачные круги.
Для удаления масел используют керосин, уайт-спирит, бензин и др. Для устранения влаги применяют термическую обработку: прокалку при температуре 100 — 150°С. Рекомендуется также обрабатывать проволоку в 20%-ном растворе серной кислоты с последующей прокалкой при температуре 250°С 2-2,5 ч.
В соответствии с требованиями EN 756 обозначение сварочных проволок строится по схеме:
SA | X; X/2 | H(L) | Si (Si2) | Mo (Mo1) | Ni (Ni0,5; Ni1; Ni 2) |
Проволока сплошного сечения для сварки под флюсом | [Mn],% | H ? C > 0,1 L ? C 0,1 | Si ? Si = 0,3 Si2 ? Si = 0,6 | Mo ? Mo Mo1 ? Mo = | Ni ? Ni 0,5; Ni0,5 ? Ni = 0,4…0,8; Ni1 ? Ni = 1,0…1,5 |