Флюс для пайки паяльником
Припой — металл или сплав, применяемый при пайке для соединения заготовок и имеющий температуру плавления ниже, чем соединяемые металлы. Применяют сплавы на основе олова, свинца, кадмия, меди, никеля и других металлов
Для пайки соединений проводниковых материалов в зависимости от предельно допустимых рабочих температур и требуемой прочности паяного шва применяются мягкие и твердые припои.
К мягким относятся припои с температурой плавления до 400 °С, а к твердым — свыше 500 °С. Припои с температурами выше температуры плавления чистого олова в интервале до 400 °С называются полутвердыми.
Мягкие и полутвердые припои имеют предел прочности при растяжении до 15–100 МПа и применяются для пайки токоведущих частей, не являющихся одновременно несущими конструкциями машин или аппаратов.
Пайка мягкими и полутвердыми припоями осуществляется паяльником или погружением деталей в расплавленный припой, соединяемые поверхности при этом предварительно облуживаются, как правило, припоем той же марки и покрываются обычно канифолью (флюсом).
Оловянно-свинцовые припои выпускаются в виде слитков, прутков, проволоки, ленты и трубок, заполненных канифолью.
Твердые припои имеют предел прочности при растяжении 100– 500 МПа и применяются в качестве припоев первой категории прочности при пайке токоведущих частей, быстроходных, допускающих высокий нагрев электрических машин и деталей, воспринимающих основную механическую нагрузку.
Система обозначения припоев

Обозначение марки припоя обычно начинается с буквы «П» — припой. Числа в марке припоя показывают содержание компонентов (буквы после буквы «П») в процентах (округленно). Буква или буквосочетание в конце обозначения марки припоя означает, что данный компонент составляет оставшееся содержание припоя.
А — алюминий;
Ж — железо;
И — индий;
К или Кд — кадмий;
М — медь;
О — олово;

С — свинец;
Ср — серебро;
Су — сурьма;
Ф — фосфор;
Ц — цинк.

ПОС61 — припой оловянно-свинцовый, олова — 61 %, остальное — свинец;
ПОССу61-0,5 — припой оловянно-свинцовый, олова — 61 %, сурьмы — 0,5 %, остальное — свинец;
ПОС61М — припой оловянно-свинцовый, олова — 61 %, остальное — свинец и добавка меди;
ПСр3И — припой серебряно-индиевый, серебра — 3 %, остальное — индий;
ПСр3Кд — серебряно-кадмиевый, серебра — 3 %, остальное — кадмий.
Паяльные флюсы — вещества и соединения, применяемые для предотвращения образования оксидной пленки на поверхности припоя и паяемого материала, а также удаления продуктов окисления из зоны пайки. Температура плавления флюсов ниже, чем температура плавления припоя. Флюсы применяют в твердом, пастообразном и порошкообразном состоянии, а также в виде водных, спиртовых или глицериновых растворов.

Флюсы, применяемые при пайке, классифицируются по: температурному интервалу активности; природе растворителя; природе активатора определяющего действия; механизму действия; агрегатному состоянию. В зависимости от температурного интервала активности паяльные флюсы подразделяются на: низкотемпературные (≤ 450 °С); высокотемпературные ({amp}gt; 450 °С).
По природе растворителя паяльные флюсы подразделяются на: водные; неводные.
По природе активаторов определяющего действия низкотемпературные паяльные флюсы подразделяются на: канифольные; кислотные; галогенидные; гидразиновые; фторборатные; анилиновые; стеариновые.
По природе активаторов определяющего действия высокотемпературные паяльные флюсы подразделяются на: галогенидные; фторборатные; боридно-углекислые.
Если флюс содержит несколько активаторов, необходимо называть все активаторы. Например, канифольно-галогенидный, фторборатногалогенидный флюс.
По механизму действия паяльные флюсы подразделяются на: защитные; химического действия; электрохимического действия; реактивные. По агрегатному состоянию паяльные флюсы подразделяют на: твердые; жидкие; пастообразные.
Параметры флюсов для пайки мягкими и полутвердыми припоями приведены в табл. 3.12.
Таблица 3.12Флюсы для пайки мягкими и полутвердыми припоями (нормали электротехники ОАА.614.017-67 и ОАА.614.028-68 )
Марка | назначение | основные данные флюсов | отмывка после пайки | |
компонент | состав, % | |||
К | Лужение и пайка токоведущих частей из меди и ее сплавов | Канифоль сосновая | 100 | Не требуется |
КСП | Лужение и пайка токоведущих частей из меди и ее сплавов | Канифоль сосновая | 25 | |
Спирт этиловый технический марки Б | 75 | |||
ФПП | Лужение и пайка токоведущих частей из меди и ее сплавов | Смола полиэфирная марки ПА9 | 20–30 | |
Метилэтилкетон или этилацетат | 80–70 | |||
СТУЗО-12224-61 | Лужение и пайка деталей из меди, никеля и их сплавов и деталей с покрытиями медью, оловом, кадмием, серебром и цинком | Канифоль сосновая | 20–35 | Тампоном или кистью, смоченными в растворителе, например, спирте |
Диэтиламин солянокислый | 3–5 | |||
Триэтаноламин | 1–2 | |||
Спирт этиловый технический марки Б | Остальное | |||
Ф59АОАА. 614.017-67 | Лужение и пайка алюминия и сплава АМц между собой и с медью и ее сплавами | Кадмий борфторид | 10 | Проточной горячей водой или спиртом |
Цинк борфторид | 3 | |||
Аммоний борфторид | 5 | |||
Триэтаноламин | 82 | |||
34А ОАА. 614.017-67 | Пайка алюминия и его сплавов (температура плавления 420 °С) | Кадмий фтористый | 50±6 | Горячей, затем холодной проточной водой |
Литий хлористый | 32±6 | |||
Цинк хлористый | 8±2 | |||
Натрий фтористый | 10±1 | |||
ЛМ1 | Лужение и пайка железоникелевых сплавов и нержавеющих сталей | Канифоль сосновая | 20–35 | Тампоном или кистью, смоченными в растворителе, например, спирте |
Диэтиламин солянокислый | 3–5 | |||
Триэтаноламин | 1–2 | |||
Спирт технический марки Б | Остальное | |||
Ф38Н | Лужение и пайка нихрома между собой и с медью | Диэтиламин солянокислый | 25–30 | Горячей водой или кистью, смоченной в спирте |
Этиленгликоль | Остальное | |||
Кислота ортофосфорная | 29–25 | |||
Параметры флюсов для пайки меди и ее сплавов приведены в табл. 3.13.

Таблица 3.13Флюсы для пайки — состав и способы удаления остатков флюса
Марка | состав | удаление остатков флюса после пайки | |
компонент | % | ||
ФКСп (ФКЭт) | Канифоль сосновая | 10–60 | Этиловый спирт или спиртобензиновая смесь 1:1 |
Спирт этиловый или этилацетат | 90–40 | ||
ФКДТ | Канифоль сосновая | 10–20 | |
Диметилалкилбензиламмонийхлорид (китамин АБ) | 0,1–3,0 | ||
Трибутилфосфат | 0,01–0,10 | ||
Спирт этиловый или этилацетат | 89,89–76,90 | ||
ЛТИ-120 | Канифоль сосновая | 20–25 | |
Диэтиламин солянокислый | 3–5 | ||
Триэтаноламин | 1–2 | ||
Спирт этиловый | 76–68 | ||
ФГСп | Гидразин солянокислый | 2–4 | Горячая проточная вода (70±10 °С) или спирто-бензиновая смесь 1:1 |
Этиленгликоль или глицерин | 25–50 | ||
Спирт этиловый | 73–46 | ||
ФСкСп | Семикарбазид гидрохлорид | 2–4 | |
Этиленгликоль или глицерин | 25–50 | ||
Спирт этиловый | 73–46 | ||
ФСкПс | Семикарбазид гидрохлорид | 3–5 | |
Глицерин | 70–58 | ||
Полиокс-100 или полиокс-115 | 27–37 | ||
ФТС | Кислота салициловая | 4,0–4,5 | Спирто-бензиновая смесь 1:1 |
Триэтаноламин | 1,0–1,5 | ||
Спирт этиловый | 95–94 | ||
ФДГл | Диэтиламин солянокислый | 4–6 | Горячая проточная вода (70±10 °С) |
Глицерин | 96–94 | ||
ФЦА | Цинк хлористый | 45,5 | Горячая проточная вода (70±10 °С) и нейтрализующие реактивы |
Аммоний хлористый | 9 | ||
Вода | 45,5 | ||
Гидрат окиси цинка | До выпадения осадка | ||
ФДФс | Диэтиламин солянокислый | 20–25 | Горячая проточная вода (70±10 °С) или спирто-бензиновая смесь 1:1 |
Этиленгликоль | 60–50 | ||
Кислота ортофосфорная (уд. вес 1,7) | 20–25 | ||
ЖЗ-1-АП | Масло цилиндровое «52» или «КС-19» | 79–81 | Спирто-бензиновая смесь 1:1, трихлорэтилен, ацетон |
Кремнийорганическая жидкость ПФМС-6 | 16–17 | ||
Олеиновая кислота | 4,9–1,8 | ||
Антиоксидант НГ-2246 | 0,1–0,2 | ||
ЖЗ-2-АП | Масло цилиндровое «52» или «КС-19» | 58,52–69,75 | |
Кремнийорганическая жидкость ПФМС-6 | 21,65–10,66 | ||
Хлопковое масло | 11,0–10,64 | ||
Олеиновая кислота | 8,79–9,02 | ||
Антиоксидант НГ-2246 | 0,04–0,03 | ||
284 | Борный ангидрид | 23–27 | Горячая проточная вода (70±10 °С) и холодная проточная вода |
Калий фтористый | 33–37 | ||
Калий борфтористо-водородный | 44–36 | ||
209 | Борный ангидрид | 33–37 | |
Калий фтористый | 40–44 | ||
Калий борфтористо-водородный | 27–19 | ||
200 | Борный ангидрид | 70–62 | Горячая проточная и нейтрализующие реактивы |
Натрий тетраборнокислый (бура) | 17–21 | ||
Кальций фтористый | 13–17 | ||
34А | Калий хлористый | 56–44 | Горячая проточная и нейтрализующие реактивы |
Литий хлористый | 29–35 | ||
Цинк хлористый | 6–10 | ||
Натрий фтористый | 9–11 | ||
Ф370А | Калий хлористый | 51–46 | |
Литий хлористый | 36–39 | ||
Натрий фтористый | 4–5 | ||
Кадмий хлористый | 9–10 | ||
16ВК | Натрий хлористый | 12 | |
Калий хлористый | 44 | ||
Литий хлористый | 34 | ||
Эвтектика (алюминий фтористый — 54 %, калий фтористый — 46 %) | 10 | ||
Таблица 3.14Флюсы для пайки — влияние остатков флюса на изоляцию и их коррозионное действие
Марка | влияние остатков флюса на сопротивление изоляции | коррозионное действие остатков флюса | |||
на медь | на серебряное покрытие | на оловянносвинцовое покрытие | на никелевое покрытие | ||
ФКСп (ФКЭт), ФКДТ | не влияют | не оказывают | |||
ЛТИ-120, ФГСп, ФСкСп | снижают | оказывают | не оказывают | ||
ФСкПс | снижают | оказывают | не оказывают | оказывают | не оказывают |
ФТС | снижают | оказывают слабое | не оказывают | ||
ФДГл | снижают | оказывают | оказывают слабое | не оказывают | н/д |
ФДФс | снижают | оказывают | не оказывают | не оказывают | оказывают |
ФЦА | снижают | оказывают | |||
ЖЗ-1-АП, ЖЗ-2-АП | не влияют | не оказывают | – | ||
При пайке медных жил, а также проводников заземления к броне и свинцовой оболочке кабелей используют паяльную пасту (мас. част.): канифоль — 10, жир животный — 3, аммоний хлористый — 2, цинк хлористый — 1, вода или этиловый спирт (ректификат) — 1. В качестве флюса также часто используется паяльная паста: канифоль — 2,5 %, сало — 5 %, цинк хлористый — 20 %, аммоний хлористый — 2 %, вазелин технический — 65,5 %, вода дистиллированная — 5 %.
Параметры флюсов для пайки и сварки алюминия приведены в табл. 3.15.
Таблица 3.15Флюсы для пайки и сварки алюминия
Марка | состав, % | температура плавления, °с | применение | |||||
калий хлористый | натрий хлористый | литий хлористый | натрий фтористый | криолит марки к-1 | Магний хлористый | |||
ВАМИ | 50–55 | 30–35 | – | – | 10–20 | – | 630 | Для оконцевания жил проводов и кабелей |
АФ-4А | 50 | 28 | 14 | 8 | – | – | {amp}gt;{amp}gt; 600 | Только для соединения жил кабелей в муфтах |
ХП | 50 | – | 30 | – | – | 20 | – | – |
В соответствии с государственным стандартом, существует следующее классификационное деление припоев по температуре их плавления:
- низкотемпературные, их также называют мягкими. Температура плавления этих паяльных сплавов не превышает 450 ℃. В свою очередь, данная категория делится на две подкатегории. Паяльные сплавы, плавящиеся при температуре до 145 ℃ называются особолегкоплавкими, плавящиеся в диапазоне от 145 до 450 ℃ относятся к легкоплавким;
- высокотемпературные или твёрдые. К ним относятся припои с температурой плавления, превышающей 450 ℃. Этот класс сплавов включает в себя три подкатегории. Среднеплавкими считаются те, которые расплавляются при температуре до 1100 ℃, имеющие точку плавления от 1100 до 1850 ℃ называют высокоплавкими. Присадочные материалы, использующиеся при пайке, которые занимают ещё более высокотемпературные позиции, относятся к тугоплавким.
Температура плавления и другие свойства припоев на основе олова и свинца
В таблице представлена температура плавления припоев распространенных марок на основе олова и свинца, а также их теплофизические и механические свойства. Свойства припоев даны при комнатной температуре.

В таблице приведены следующие свойства: температура плавления припоев (солидус и ликвидус) в градусах Цельсия, плотность припоев, удельное электрическое сопротивление, коэффициент теплопроводности, временное сопротивление разрыву, относительное удлинение, ударная вязкость, твердость по Бринеллю, HB.
Температура плавления припоев (ликвидус — жидкое состояние припоя) на основе свинца и олова находится в диапазоне от 145 до 308°С. Следует отметить, что температура плавления припоя, равная 145°С, соответствует припою ПОСК 50-18, который относится к категории легкоплавких припоев. При температуре 308 градусов Цельсия в жидком виде находится припой ПОССу 5-1.
Рассмотрены свойства следующих припоев: ПОС 90, ПОС 61, ПОС 40, ПОС 10, ПОС 61М, ПОСК 50-18, ПОССу61-0,5, ПОССу 50-0,5, ПОССу 40-0,5, ПОССу 35-0,5, ПОССу 30-0,5, ПОССу 25-0,5, ПОССу 18-0,5, ПОСу 95-5, ПОССу 40-2, ПОССу 35-2, ПОССу 30-2, ПОССу 25-2, ПОССу 18-2, ПОССу 15-2, ПОССу 10-2, ПОССу 8-3, ПОССу 5-1, ПОССу 4-6.
По данным таблицы видно, что плотность припоев меняется в пределах от 7300 до 11200 кг/м3. Припоем с минимальной плотностью является оловянно-свинцовый припой ПОСу 95-5. Наиболее тяжелым из рассмотренных припоев является припой ПОССу 5-1 — плотность такого припоя имеет величину 11200 кг/м3.
Теплопроводность припоев в таблице дана в размерности ккал/(см·с·град). Припоями с максимальной теплопроводностью являются ПОС 90 и ПОСК 50-18 — их теплопроводность равна 0,13 ккал/(см·с·град).
К серебряным припоям относятся такие припои, как ПСр72, ПСр71, ПСр70, ПСрМО68-27-5, ПСр65, ПСр62, ПСр50, ПСр50КД, ПСрМЦКд45-15-16-24, ПСрКДМ50-34-16, ПСр45, ПСр40, ПСр37,5, ПСр25, ПСр25Ф, ПСр15, ПСр12М, ПСр10, ПСр010-90, ПСрОСу8 (Впр-6), ПСрМО5 (Впр-9), ПСрОС 3,5-95, ПСр3, ПСрО 3-97, ПСрОС3-58, ПСр3Кд, ПСр2,5, ПСр2,5С, ПСр2, ПСрОС2-58, ПСр1,5, ПСр1.
Плотность припоев на основе серебра изменяется в пределах от 7400 до 11400 кг/м3. Низкая плотность припоя, содержащего серебро, свойственна таким припоям, как: ПСрОСу8, ПСрМО5, ПСрОС 3,5-95 и ПСр010-90. Наиболее тяжелый припой — это ПСр3, его плотность равна 11,4 г/см3.

Температура плавления припоев на основе серебра находится в диапазоне от 183 до 860°С. Припоем с наименьшим удельным электрическим сопротивлением является серебряный припой ПСр72 — его электросопротивление равно 2,1 мкОм·см.
Удельное электрическое сопротивление припоев значительно изменяется в зависимости от марки припоя. Оно может иметь значение в интервале от 2,1 (у припоя ПСр72) до 37,2 мкОм·см — у ПСр37,5.
Примечание: плотность и удельное электрическое сопротивление припоев указаны при комнатной температуре.
В таблице даны значения температуры плавления припоев и легкоплавких сплавов на основе ртути Hg, цезия Cs, калия K, висмута Bi, таллия Tl, индия In, олова Sn, свинца Pb, кадмия Cd, сплав Вуда, сплавы Роуза (Розе), золота Au, магния Mg, цинка Zn, серебра Ag.
Значения температуры плавления припоев и сплавов в таблице приведены начиная с самых легкоплавких сплавов и находятся в диапазоне от -48,2 до 262°С. В сплавах с отрицательной температурой плавления (от минус 48,2°С) преобладает содержание ртути и щелочных металлов. Легкоплавкие сплавы с температурой плавления от 200 до 260°С имеют в своем составе преимущественное содержание висмута и таллия.
Примечание: эвт — эвтектические сплавы или близкие к ним; для неэвтектических сплавов приводятся значения температуры солидуса.
В таблицах даны теплофизические свойства некоторых припоев и баббитов (антифрикционных подшипниковых материалов) при комнатной температуре. Представлены такие свойства, как: плотность, коэффициент температурного расширения и теплопроводность.
Указаны свойства следующих припоев и баббитов: ПОС-30, ПОС-18, ПСр45, ПОЦ70, ПОЦ60, 34А, эвтектический силумин; баббиты, Б83, Б16, БКА, Б88, Б89, Б6.
Следует отметить, что плотность припоев, коэффициент температурного расширения (КТлР) и теплопроводность припоев и баббитов имеют близкие значения, за исключением припоя 34А и эвтектического силумина, которые в 2-4 раза легче.

В таблице представлен состав и значение коэффициента теплопроводности алюминиевых антифрикционных сплавов, баббитов и припоев при температуре от 4 до 300 К (от -269 до 27°С).
Рассмотрены следующие припои и подшипниковые материалы: АН2,5, АО6-1, БКА, Б16, Б83, Б88, ПОС61, ПОС18, ПОССу18-2, ПОССу40-2, сплав Вуда, сплав Розе, ПСр25, ПСр44, ПСр70.
Наиболее теплопроводным антифрикционным сплавом, по данным таблицы, является сплав АО6-1 — его теплопроводность равна 180 Вт/(м·град). Наибольшую теплопроводность среди рассмотренных припоев имеет серебряный припой ПСр70 (на основе серебра и меди) — теплопроводность этого припоя равна 170 Вт/(м·град).
Источники:
- Физические величины. Справочник. А.П. Бабичев, Н.А. Бабушкина, А.М. Братковский и др.; Под ред. И.С. Григорьева, Е.З. Мейлихова. — М.:Энергоатомиздат, 1991. — 1232 с.
- Чиркин В.С. Теплофизические свойства материалов ядерной техники.
- Таблицы физических величин. Справочник. Под ред. акад. И.К. Кикоина. М.: Атомиздат, 1976. — 1008 с.
- Цветные металлы. Справочник. — Нижний Новгород: «Вента-2», 2001. — 279 с.
Твердая пайка осуществляется электроконтактным способом, графитовыми или медными электродами либо с помощью дуговой сварки. Мелкие детали паяют с помощью автогена. При электроконтактном способе припой укладывается заранее между соединяемыми деталями или вносится в соединение в процессе пайки, сварка осуществляется без присадки металла путем сплавления концов соединяемых деталей.
Для электроконтактной пайки серебряными припоями в качестве флюса обычно служит бура. Пайка самофлюсующимися припоями, в состав которых входит фосфор, и сварка в защитной атмосфере осуществляются без применения флюса.
Припои с содержанием фосфора для пайки сталей и чугуна и соединений, подвергающихся ударам и вибрациям, из-за хрупкости паяного шва применять нельзя. Классификация и химический состав мягких и полутвердых припоев приведены в табл. 3.1.

Таблица 3.1Классификация и химический состав мягких и полутвердых припоев
Припой | Химический состав, % | |||||||
Вид | Марка | Олово | Сурьма | Кадмий | Медь | Свинец | Серебро | Индий |
Олово | О2 | 99,9 | – | – | – | – | – | – |
Бессурьмянистые | ПОС61 | 60–62 | – | – | – | Остальное | – | – |
ПОС40 | 39–41 | – | – | – | – | – | ||
ПОС10 | 9–10 | – | – | – | – | – | ||
ПОС61М | 60–62 | – | – | 1,5–2,0 | – | – | ||
ПОСК50-18 | 49–51 | – | 17–19 | – | – | – | ||
Малосурьмянистые | ПОССу61-0,5 | 60–62 | 0,2–0,5 | – | – | Остальное | – | – |
ПОССу40-0,5 | 39–41 | – | – | – | – | |||
ПОССу30-0,5 | 29–31 | – | – | – | – | |||
ПОССу18-0,5 | 17–18 | – | – | – | – | |||
Сурьмянистые | ПОССу95-5 | 94–96 | 4–5 | – | – | Остальное | – | – |
Серебряные | ПСрО10-90 | Остальное | – | – | – | – | 10±0,5 | – |
ПСрОСу8 (ВПр-6) | – | – | – | – | – | 8±0,5 | – | |
ПСрМО5 (ВПр-9) | – | – | – | 2±0,5 | – | 5±0,5 | – | |
ПСрОС3,5-95 | – | – | – | – | 3,5±0,4 | – | ||
ПСрОС3-58 | 57,8±1,0 | – | – | – | – | 3±0,4 | – | |
ПСр3 | – | 3±0,3 | – | |||||
ПСр3Кд | – | – | 95–97 | – | – | 3,0–4,0 | – | |
ПСрО3-97 | Остальное | – | – | – | – | 3±0,3 | – | |
ПСр2,5 | 5,0–6,0 | – | – | – | 91–93 | 2,2–2,7 | – | |
ПСр2,5С | – | – | – | – | – | 2,5±0,2 | – | |
ПСр2 | 30±1 | 2±0,2 | – | |||||
ПСрОС2-58 | 58,8±1,0 | – | – | – | – | 2±0,3 | – | |
ПСр1,5 | 15±1 | – | – | – | – | 1,5±0,3 | – | |
ПСр1 | 35±1 | – | – | – | – | 1±0,2 | – | |
Индиевые | ПОСИ30 | 42 | – | – | – | 28 | – | 3 |
ПСр3И | – | – | – | – | – | 3 | 97 | |
Физико-механические свойства мягких и полутвердых припоев приведены в табл. 3.2.
Таблица 3.2Физико-механические свойства мягких и полутвердых припоев
Марка припоя | температура плавления, °с | ориентировочная температура пайки, °с | плотность, кг/м³ | удельное электрическое сопротивление, мком·м | предел механической прочности при растяжении, Мпа | |
солидус | ликвидус | |||||
О2 | 232 | 232 | 280 | 7310 | – | 25 |
ПОС61 | 183 | 190 | 240 | 8500 | 0,139 | 43 |
ПОС40 | 183 | 238 | 290 | 9300 | 0,159 | 38 |
ПОС10 | 268 | 299 | 350 | 10800 | 0,200 | 32 |
ПОС61М | 268 | 192 | 240 | 8500 | 0,143 | 45 |
ПОСК50-18 | 142 | 145 | 185 | 8800 | 0,133 | 40 |
ПОССу61-0,5 | 183 | 189 | 240 | 8500 | 0,140 | 45 |
ПОССу50-0,5 | 183 | 216 | – | 8900 | 0,149 | – |
ПОССу40-0,5 | 183 | 235 | 285 | 9300 | 0,169 | 40 |
ПОССу35-0,5 | 183 | 245 | – | 9500 | 0,172 | – |
ПОССу30-0,5 | 183 | 265 | 306 | 9700 | 0,179 | 36 |
ПОССу25-0,5 | 183 | 266 | – | 10000 | 0,182 | – |
ПОССу18-0,5 | 183 | 277 | 325 | 10200 | 0,198 | 36 |
ПОССу95-5 | 234 | 240 | 290 | 7300 | 0,145 | 40 |
ПОССу40-2 | 185 | 229 | – | 9200 | 0,172 | – |
ПОССу33-2 | 185 | 243 | – | 9400 | 0,179 | – |
ПОССу30-2 | 185 | 250 | – | 9600 | 0,182 | – |
ПОССу25-2 | 185 | 260 | – | 9800 | 0,183 | – |
ПОССу18-2 | 188 | 270 | – | 10100 | 0,206 | – |
ПОССу15-2 | 184 | 275 | – | 10300 | 0,208 | – |
ПОССу10-2 | 268 | 285 | – | 10700 | 0,208 | – |
ПОССу8-3 | 240 | 290 | – | 10500 | 0,207 | – |
ПОССу5-1 | 275 | 308 | – | 11200 | 0,200 | – |
ПОССу4-6 | 244 | 270 | – | 10700 | 0,208 | – |
ПСрО10-90 | – | 280 | – | 7600 | 12,9 | – |
ПСрОСу8 (ВПр-6) | – | 250 | – | 7400 | 19,7 | – |
ПСрМО5 (ВПр-9) | – | 240 | – | 7400 | 16,3 | – |
ПСрОС3,5-95 | – | 224 | – | 7400 | 12,3 | – |
ПСрОС3-58 | – | 190 | – | 8600 | 14,5 | – |
ПСр3 | – | 315 | – | 11400 | 20,4 | – |
ПСр3Кд | 300 | 325 | 360 | 8700 | 8,0 | 54 |
ПСр2,5 | 295 | 305 | 355 | 11000 | 21,4 | – |
ПСр2,5С | – | 306 | – | 11300 | 20,7 | – |
ПСр2 | – | 238 | – | 9500 | 16,7 | – |
ПСрОС2-58 | – | 183 | – | 8500 | 14,1 | – |
ПСр1,5 | – | 280 | – | 10400 | 19,1 | – |
ПСр1 | – | 235 | – | 9400 | 26,0 | – |
ПОСИ30 | 117 | 200 | 250 | 8420 | – | – |
ПСр3И | 141 | 141 | 190 | 7360 | – | – |
Физико-механические свойства плавящихся присадочных материалов, в частности, температура их плавления, определяются содержанием компонентов, входящих в их состав.
Обычно такие сплавы состоят из нескольких химических элементов, но название композиций определяется по тому элементу, который является основным и превосходит все остальные по содержанию. Например, припои на основе олова называют оловянными.

Существует большое семейство припоев, содержащих значительные удельные доли свинца и олова. Такие паяльные сплавы принято называть оловянно-свинцовыми.
Для них принято буквенное обозначение ПОС, после которого следует цифра, показывающая процентное содержание олова в составе этого припоя.
Марка припоя | Химический состав, % | |||||
Олово | Сурьма | Медь | Цинк | Свинец | Алюминий | |
ПОС-40 | 39…41 | _ | _ | — | Остальное | — |
ПОССу40-0,5 | 39…41 | 0,05.-0,5 | — | — | — | — |
ПОССу40-2 | 39…41 | 1.5…2 | — | — | — | — |
ПОССуЗО-О.5 | 29 31 | 0,05-0,5 | — | — | —»— | — |
ПОССуЗО-2 | 29…31 | 1,5-2 | — | — | —»— | — |
А | 38,6…42,1 | — | 1,5-2 | 56…59 | — | — |
ЦО-12 | 12 | — | — | 83 | — | — |
ЦА-15 | — | — | — | 85 | — | 15 |
Компоненты, входящие в состав припоя, оказывают воздействие на физические качества сплава, образуя нечто новое, не присущее каждому из компонентов в отдельности.
При этом наибольшее влияние на результирующие свойства припоя (такие, как температура его плавления) оказывает элемент, имеющий наибольший удельный вес в сплаве.
Так, паяльные сплавы на основе такого легкоплавкого металла, как олово, относятся к низкотемпературным или мягким. Этим подчёркивается связь температуры плавления металла с его механической твёрдостью.

То есть, металлы, которые плавятся при более низкой температуре, являются более мягкими.
Существует множество припоев, которые создаются на основе меди, алюминия, цинка, серебра, золота, платины. Высокотемпературная пайка осуществляется сплавами, в состав которых входят титан, цирконий, молибден и другие металлы.
Марки мягких припоев для пайки паяльником
Припой представляет собой сплав легкоплавких металлов. Как правило, в состав припоя входит олово. Можно паять и чистым оловом, но оно дорогое и поэтому в олово добавляют дешевый свинец. Олово является экологически чистым металлом и его можно применять в качестве припоя для пайки в чистом виде пищевой посуды и медицинских инструментов. Если согнуть или сжать трубочку из чистого олова, то она хрустит. Чем больше в составе припоя свинца, тем темнее поверхность припоя.
Припои маркируются буквами и цифрами. Например ПОС-61, что обозначает П – припой, О – оловянный, С – свинцовый, 61 – % содержания олова. ПОС-61 является самым распространенным, так как подходит для пайки в большинстве случаев. В народе ПОС-61 часто называют третник , так как в его составе третья часть свинца (Pb).
Припои бывают мягкие и твердые. Температура плавления мягких припоев ниже 450˚С. Твердые припои плавятся при нагреве свыше 450˚С и для пайки электрическим паяльником не используются.
О2 — лужение и пайка коллекторов, якорных секций и обмоток электрических машин с изоляцией класса H, лужение ответственных неподвижных контактов, в том числе содержащих цинк;
ПОС90 — лужение и пайка внутренних швов пищевой посуды и медицинской аппаратуры;
ПОС61 — лужение и пайка электрои радиоаппаратуры, печатных плат, точных приборов с высокогерметичными швами, где недопустим перегрев;
ПОС40 — лужение и пайка электроаппаратуры, деталей из оцинкованного железа с герметичными швами;

ПОС10 — лужение и пайка контактных поверхностей электрических аппаратов, приборов, реле;
ПОСК50-18 — пайка деталей из меди и ее сплавов, чувствительных к перегреву, в том числе пайка алюминия, плакированного медью. Пайка керамики, стекла и пластиков, металлизированных оловом, серебром, никелем;
ПОС61М — пайка пищевой посуды, медицинской аппаратуры, электрои радиоаппаратуры, печатных плат, деталей, чувствительных к перегреву;
ПОССу61-0,5 — лужение и пайка электроаппаратуры, пайка печатных плат, обмоток электрических машин, оцинкованных радиодеталей при жестких требованиях к температуре;
ПОССу50-0,5 — лужение и пайка авиационных радиаторов;
ПОССу40-0,5 — лужение и пайка жести, обмоток электрических машин, для пайки монтажных элементов моточных и кабельных изделий;

ПОССу35-0,5 — лужение и пайка свинцовых кабельных оболочек;
ПОССу30-0,5 –лужение и пайка листового цинка, углеродистых и нержавеющих сталей. Лужение и пайка проводов, кабелей, бандажей, радиаторов, различных деталей аппаратуры и приборов, работающих при температуре до 160 °С;
ПОССу25-0,5 — лужение и пайка радиаторов;
ПОССу18-0,5 — лужение и пайка трубок теплообменников, электроламп;
ПОССу95-5; ПСр3Кд — горячее лужение и пайка коллекторов, якорных секций, бандажей и токоведущих соединений электрических машин нагревостойкого исполнения и с повышенными частотами вращения. Пайка трубопроводов и различных деталей электрооборудования.
ПОССу40-2 — припой широкого назначения;
ПОССу30-2 — лужение и пайка в холодильном аппаратостроении, электроламповом производстве;
ПОССу18-2, ПОССу15-2, ПОССу10-2 — пайка в автомобилестроении;
ПОССу8-3 — лужение и пайка в электроламповом производстве;

ПОССу5-1 — лужение и пайка деталей, работающих при повышенных температурах;
ПОССу4-6 — пайка белой жести, лужение и пайка деталей с закатанными и клепанными швами из латуни и меди;
ПОССу4-4 — лужение и пайка в автомобилестроении;
ПОСК2-18 — лужение и пайка металлизированных керамических деталей;
ПОСИ30; ПСр3И — пайка меди и ее сплавов и других металлов, неметаллических материалов и стекла с металлическими покрытиями. Пайка деталей радиоэлектронной аппаратуры. Обладает высокой жидкотекучестью и обеспечивает хорошее сцепление спаиваемых поверхностей.
Параметры мягких припоев с низкой температурой плавления приведены в табл. 3.3.
Таблица 3.3Мягкие припои (сплавы) с низкой температурой плавления
сплав | химический состав, % | температура плавления, °с | ||||||
олово | свинец | кадмий | висмут | серебро | индий | солидус | ликвидус | |
Вуда | 12–13 | 24,5–25,6 | 12–13 | 49–51 | – | – | 66 | 70 |
Розе | 24,5–25,5 | 24,5–25,6 | – | 49–51 | – | – | 90 | 92 |
Д’Арсе | 9,6 | 45,1 | – | 45,3 | – | – | – | 79 |
Липовица с индием | 11,8 | 22,2 | 8,5 | 42 | – | 15,5 | – | 48 |

Примечание. Применяются в радиосхемах с полупроводниковыми приборами и в схемах, где припой используется в качестве температурного предохранителя.
Химический состав и физико-механические свойства твердых серебряных и медно-фосфорных припоев приведены в табл. 3.4.
Таблица 3.4Химический состав и физико-механические свойства твердых серебряных и медно-фосфорных припоев
Марка припоя | химический состав, % | плотность, кг/м3 | температура кристаллизации,°с | предел прочности при растяжении, Мпа | ||||
серебро | Медь | цинк | фосфор | начало | конец | |||
ПСр72 | 72±0,5 | 28±0,5 | – | – | 9900 | 779 | 779 | – |
ПСр50 | 50±0,5 | 50±0,5 | – | – | 9300 | 850 | 779 | – |
ПСр45 | 45±0,5 | 30±0,5 | 25 1 –1,5 | – | 9100 | 725 | 660 | 300 |
ПСр25 | 25±0,3 | 40±1 | 35±2,5 | – | 8700 | 775 | 745 | 280 |
ПСр71 | 71±0,5 | 28±0,7 | – | 1 ±0,2 | 9800 | 795 | 750 | – |
ПСр25ф | 25±0,5 | 70±1 | – | 5±0,5 | 8500 | 710 | 650 | – |
ПСр15 | 15±0,5 | 80,2±1 | – | 4,8 0,2/–0,3 | 8300 | 810 | 635 | – |
ПМФ7 (МФЗ) | – | Остальное | – | 7–8,5 | – | 860 | 710 | – |
Параметры медно-цинковых и медно-никелевых твердых припоев приведены в табл. 3.5.
Таблица 3.5Медно-цинковые и медно-никелевые твердые припои
Марка припоя | химический состав, % | физические свойства | |||||||||
Медь | никель | железо | кремний | Бор | цинк | олово | температура кристаллизации, °с | плотность, кг/м3 | предел прочности при растяжении, Мпа | ||
солидус | ликвидус | ||||||||||
Л63 | 62–65 | – | – | – | – | Остальное | – | 900 | 905 | 8500 | 310 |
ЛОК59-0,1-0,3 | 60,5– 63,5 | – | – | 0,2–0,4 | – | Остальное | 0,7–1,1 | 890 | 905 | 8200 | – |
ПЖЛ500 | Остальное | 27–30 | 41,5 | 1,5–2 | 0,2 | – | – | 1080 | 1120 | 8630 | 600 |
Параметры серебряных припоев с пониженной температурой плавления приведены в табл. 3.6.
Таблица 3.6Серебряные припои с пониженной температурой плавления
Марка припоя | химический состав, % | плотность, кг/м3 | температура кристаллизации, °с | ||||||
серебро | Медь | цинк | кадмий | олово | никель | начало | конец | ||
ПСр50Кд | 50±0,5 | 16±1 | 16±2 | 18±1 | – | – | 9300 | 650 | 635 |
ПСр40 | 40±1 | 16,7 0,7/–0,4 | 17 0,8/–0,4 | 26 0,5/ –1 | – | 0,3±0,2 | 8400 | 605 | 595 |
ПСр62 | 62±0,5 | 28±1 | – | – | 10±1,5 | – | 9700 | 700 | 660 |
Преимущественные области применения твердых припоев приведены в табл. 3.7.
Таблица 3.7Преимущественные области применения твердых припоев
Марка припоя | область применения |
ПСр72; ПСр50 | Пайка металлокерамических контактов и различных ответственных токоведущих соединений, подвергающихся изгибающим и ударным нагрузкам |
ПСр45 | Пайка меди и ее сплавов, нержавеющих и конструкционных сталей. Пайка короткозамкнутых обмоток роторов и демпферных обмоток высоконагруженных электрических машин. Припой обеспечивает высокую плотность и прочность паяных швов |
ПСр25 | Пайка меди и ее сплавов, нержавеющих и конструкционных сталей, заменяет припой ПСр45 при выполнении менее ответственных соединений |
ПСр71 | Пайка деталей аналогично припою ПСр72, но где требуется большая жидкотекучесть |
ПСр25ф; ПСр15; ПМФ7 | Пайка меди и ее сплавов, в том числе различных токоведущих частей машин и аппаратов, не испытывающих ударных и изгибающих нагрузок |
Л63; ЛОК59-0,1-0,3 | Пайка меди и чугуна. Паяные соединения обладают высокой прочностью и хорошо работают в условиях ударных и изгибающих нагрузок |
ПЖЛ500 | Пайка соединений, работающих при температурах до 600 °С |
Параметры медно-фосфорных припоев приведены в табл. 3.8.
Таблица 3.8Медно-фосфорные припои
Марка припоя | химический состав, % | температура плавления, °с | |
Медь | фосфор | ||
ПФМ-1 | 90,0–91,5 | 8,5–10 | 725–850 |
ПФМ-2 | 92,5 | 7,5 | 710–715 |
ПФМ-3 | 91,5–93,0 | 7,0–8,5 | 725–860 |
ПМФ7 (МФ3) | Остальное | 7,0–8,5 | 710–860 |
Примечание. Для медно-фосфорных и серебряных припоев в качестве флюса применяют буру в виде порошка или в смеси с поваренной солью.
Параметры припоев для пайки алюминия приведены в табл. 3.9, 3.10.
Таблица 3.9Химический состав и физические свойства припоев для пайки алюминия
Марка припоя | химический состав, % | температура плавления, °с | предел механической прочности при растяжении, Мпа | |||||
алюминий | Медь | олово | цинк | кадмий | кремний | |||
Кадмиевый | – | – | 36 | 40 | 24 | – | – | 85 |
АВИА-1 | – | – | 55 | 25 | 20 | – | 20 | – |
АВИА-2 | 15 | – | 40 | 25 | 20 | – | 250 | – |
ВПТ-4 | 55 | – | – | 40 | – | 5 | 410 | – |
34-А | 66 | 28 | – | – | – | 6 | 545 | 180 |
35-А | 72 | 2,1 | – | – | – | 7 | 540 | 140 |
А | – | 2,0–1,5 | 40 | 58,5 | – | – | 425 | 80 |
В | 12 | 8 | 80 | – | – | 410 | 185 | |
ЦО-12 | – | – | 12 | 88 | – | – | 500–550 | – |
ЦА-15 | 15 | – | – | 85 | – | – | 550–600 | – |
Таблица 3.10Другие припои для пайки алюминия
Марка припоя | химический состав, % | температура полного расплавления, °с | температура пайки, °с | плотность, кг/м3 | ||||
олово о1 | цинк | кадмий | алюминий а7 | Медь М0 | ||||
П250А | 79–81 | 19–21 | – | – | 0,15 | 250 | 300 | 7300 |
П300А | – | 50–61 | 39–41 | – | 0,045 | 310 | 360 | 7730 |
П300Б | – | 80 | – | 8 | 0,5 | 410 | 700–750 | – |
Преимущественные области применения припоев для пайки алюминия П250А, П300А и П300Б приведены в табл. 3.11.
Таблица 3.11Преимущественные области применения припоев для пайки алюминия
Марка припоя | область применения |
П250А | Лужение концов алюминиевых проводов, а также пайка погружением алюминиевых проводов с алюминиевыми и медными наконечниками |
П300А | То же, пайка соединений с повышенной коррозионной стойкостью |
П300Б | Пайка заливкой алюминиевых проводов с алюминиевыми и медными деталями |











